全文获取类型
收费全文 | 931篇 |
免费 | 166篇 |
国内免费 | 113篇 |
专业分类
航空 | 443篇 |
航天技术 | 235篇 |
综合类 | 214篇 |
航天 | 318篇 |
出版年
2024年 | 39篇 |
2023年 | 151篇 |
2022年 | 171篇 |
2021年 | 138篇 |
2020年 | 91篇 |
2019年 | 72篇 |
2018年 | 19篇 |
2017年 | 16篇 |
2016年 | 20篇 |
2015年 | 17篇 |
2014年 | 14篇 |
2013年 | 27篇 |
2012年 | 26篇 |
2011年 | 38篇 |
2010年 | 42篇 |
2009年 | 61篇 |
2008年 | 50篇 |
2007年 | 34篇 |
2006年 | 44篇 |
2005年 | 32篇 |
2004年 | 27篇 |
2003年 | 20篇 |
2002年 | 13篇 |
2001年 | 10篇 |
2000年 | 9篇 |
1999年 | 6篇 |
1998年 | 7篇 |
1997年 | 6篇 |
1996年 | 2篇 |
1995年 | 2篇 |
1994年 | 2篇 |
1993年 | 3篇 |
1992年 | 1篇 |
排序方式: 共有1210条查询结果,搜索用时 11 毫秒
211.
目前的宽度学习系统(Broad learning system,BLS)通过所建立的一系列映射节点和增强节点来形成联合节点。因为联合节点与输出层的线性连接,网络权值可以用求解伪逆的方法快速求得,避免了耗时的训练过程,从而成为快速而高效的学习方法。然而在追求高精度结果的过程中,BLS对于增强节点数量的需求过于巨大,容易造成过拟合问题。为此,本文提出了基于函数链神经网络(Functional-link neural network,FLNN)的深度分类器(FLNN based deep classifier,FLNNDC),旨在提供一种更加简单却又不失精度的BLS变体结构。FLNNDC将几个轻量级的BLS子系统堆积成栈式结构,每一个轻量级的BLS子系统随机选择一部分映射节点生成增强节点,而不是全部映射节点。和原宽度结构相比,在几个主流数据集上的实验结果表明本文所提出的FLNNDC分类器具有网络结构更小且学习速度更快的优势。 相似文献
212.
213.
随着机器学习的快速发展和其突出的非线性映射能力,越来越多的学者将机器学习方法应用到流体力学领域。为克服传统数学拟合不能很好的解决系统非线性问题,以及现有文献中所提及的一些基于神经网络的气动参数预测方法,需要进行参数化处理而带来的不便,同时为实现多变量多输出气动参数快速预测的目的,基于卷积神经网络考虑机翼变迎角和浮沉建立了一种多变量多输出的机翼气动参数预测模型,实现了机翼气动参数的快速预测。结果表明:所建模型具有较高且稳定的预测精度,并且计算效率较计算流体力学(CFD)提高了40倍。 相似文献
214.
对于小行星绕飞任务的探测器姿态控制问题,已有方法大都考虑了干扰力矩和参数不确定等因素,而忽视了执行器故障情况。针对执行器故障条件下的小行星探测器姿态控制问题,提出了一种基于自适应迭代学习的容错控制方法。所设计的控制器包括两部分:其一针对执行器故障,设计了自适应迭代学习控制器,采用类滑模的思想和自适应迭代学习算法对控制器参数进行调整,进而补偿执行器故障带来的影响,保证系统在控制输出不足情况下的高精度姿态稳定性;其二针对探测器参量变化、外部环境干扰等不确定情况,设计了基于自适应神经网络的迭代学习控制器,采用径向基函数(RadialBasisFunction,RBF)神经网络对系统非线性部分进行逼近,同时对控制器参数进行自适应迭代学习调整,进而保证系统在不确定情况下的动态性能。数值仿真结果表明该控制器能够有效抑制外部环境干扰和内部参数变化带来的不利影响,在执行器部分失效甚至完全失效故障情况下,仍能保证系统的鲁棒性并实现误差在10-2数量级内的较高姿态控制精度。 相似文献
215.
超声相控阵检测技术(PAUT)凭借其突出的技术优势被广泛应用在船舶、铁路、石油石化和航空航天等诸多领域。在焊缝超声相控阵检测(PAUT)中,对检测数据缺陷的识别定位目前多采用传统的人工判读方式,判读效率较低,对检测人员的判读经验有较高要求,难以满足自动化超声检测的要求。基于深度学习中的目标检测和跟踪算法构建智能识别模型,通过对焊缝超声相控阵检测的S、B扫图特征进行融合,并结合焊缝的三维结构信息,识别并定位出缺陷在焊缝中的三维空间位置。实验结果显示: 缺陷框的平均三维IOU(预测三维缺陷框和实际三维缺陷框的平均交并比)达到0.644 9,较为接近缺陷的真实空间位置,可以实现焊缝超声相控阵检测成像结果智能识别和定位。 相似文献
216.
提出了基于卷积神经网络(CNN)的结冰翼型气动特性预测方法,设计了输入层结冰翼型图像规范,克服了复杂冰形在翼面同一位置法线方向存在多值,单值函数难以描述的问题。预测模型可同时预测多个迎角对应的升阻力系数,实现了直接从冰形图像到气动特性的快速预测,对升力系数和阻力系数预测结果的平均相对误差均可控制在8%以内。重点研究了不同卷积层数量、卷积核数量、卷积核尺寸对模型性能的影响规律:CNN的不同层次特征对应不同滤波频率,卷积层数增加会捕获更多高频特征量;增加卷积核数量可提取更多冰形特征,提升模型性能,但数量过多会增加冗余特征,降低模型泛化性能;阻力系数预测模型对卷积核数量的最低要求大于升力系数,其原因在于,相较升力系数,阻力系数不仅受翼面压差影响,还受摩阻特性影响,其建模所需的关键特征数量多于升力系数;增大卷积核尺寸,可扩大卷积操作“视野”,增强对冰形整体特征信息的提取,有利于提升模型泛化性能。相关结论为飞机结冰气动特性实时动态预测与监测提供了新的思路和方法支撑。 相似文献
217.
搭建了基于深度强化学习(DRL)的射流闭环控制系统,在NACA0012翼型上开展了大迎角分离流动控制实验研究。NACA0012翼型弦长200 mm,实验风速10 m/s,雷诺数1.36×105。射流激励器布置在翼型上表面,通过电磁阀进行无级控制。将翼型表面的压力系数和智能体自身的动作输出作为智能体的观测量,以翼型后缘压力系数为奖励函数,对智能体进行训练。结果表明:经过训练的智能体成功地抑制了大迎角下的流动分离,比定常吹气的费效比降低了50%;智能体可以将翼型后缘压力系数稳定地控制在目标值附近;状态输入和奖励函数的改变会对最终的训练效果产生不同影响。 相似文献
218.
219.
近年来,无人机的快速发展给众多领域带来便利,然而无人机入侵给机场安全带来了巨大的挑战。由于无人机目标小、背景复杂、飞行速度快等特点,现有的主流目标检测方法通常难以准确地识别出入侵的无人机,易产生误检漏检的现象。提出了多尺度层级金字塔网络的无人机入侵检测方法,同时利用特征融合模块赋予特征金字塔不同层级、不同尺度的图像语义信息,并通过网格删除和4-Mosaic数据增强技术,对小样本数据集进行扩充,有效地提高了模型的泛化性能。实验表明,方法较于目前最优的无人机检测方法性能提升了5.5%。 相似文献
220.
针对拓扑结构为无向连通的多机械臂系统,提出了一种自适应与迭代学习相结合的分布式控制协议来实现整个系统对给定期望参考轨迹的一致性跟踪.通过引入一个适当的自适应迭代学习参数,所提自适应迭代学习控制协议能够克服机械臂系统中的干扰和模型不确定性,并且每个机械臂的自适应迭代学习控制(AILC)律仅需要利用其与邻居机械臂的相对交互信息.进一步,在只有一部分机械臂具有期望参考轨迹信息的前提下,该控制协议可以实现整个系统对期望参考轨迹的跟踪,同时能够保证轨迹跟踪误差与控制输入的有界性.此外,利用李亚普诺夫分析方法证实了所得结论的正确性,并且通过一个实例验证了所提自适应迭代学习控制协议的有效性. 相似文献