首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140篇
  免费   40篇
  国内免费   13篇
航空   144篇
航天技术   5篇
综合类   13篇
航天   31篇
  2023年   2篇
  2022年   3篇
  2021年   10篇
  2020年   3篇
  2019年   4篇
  2018年   3篇
  2017年   8篇
  2016年   4篇
  2014年   4篇
  2013年   6篇
  2012年   4篇
  2011年   5篇
  2010年   2篇
  2009年   4篇
  2008年   4篇
  2007年   3篇
  2006年   7篇
  2005年   3篇
  2004年   3篇
  2003年   6篇
  2002年   5篇
  2001年   12篇
  2000年   10篇
  1999年   17篇
  1998年   11篇
  1997年   9篇
  1996年   6篇
  1995年   2篇
  1994年   5篇
  1993年   3篇
  1992年   6篇
  1991年   5篇
  1990年   1篇
  1989年   5篇
  1988年   5篇
  1987年   2篇
  1985年   1篇
排序方式: 共有193条查询结果,搜索用时 15 毫秒
101.
对不锈钢基体上离子束混合沉积的C-SiC涂层进行了H^ 辐照模拟试验,由SIMS测量H^ 辐照前后氢的浓试分布,采用沟电子能谱(XPS)对H^ 辐照前后涂层元素C和Si进行了内层电子结合能的测量分析,研究C及Si的化学键态的变化与H的关系,探讨SiC涂层阻氢机理。  相似文献   
102.
电阻率可调的含钛碳化硅纤维的制备与性能研究   总被引:4,自引:1,他引:3  
以Ti(OBu)4与低分子量聚硅烷(LPS)为原料合成不同含钛量的聚钛碳硅烷,经熔融纺丝、空气不熔化、高温烧结制备出力学性能良好、电阻率为103~10Ω·cm的Si—Ti—C—O纤维。通过IR、GPC、VPO、XPS等分析手段系统研究了钛含量对纤维的制备、结构及其电性能的影响。  相似文献   
103.
利用TG-DTA和动力学计算方法对聚碳硅烷纤维在空气中的反应过程进行了研究,探讨了不熔化工艺条件对纤维增重及其不熔化程度的影响。  相似文献   
104.
碳化硅纤维增韧碳化硅陶瓷基复合材料(SiC/SiC CMC)具有低密度、高强高模、耐高温抗氧化、抗蠕变、抗热冲击、耐腐蚀、材料热膨胀系数小等性能优点,在航空发动机上具有巨大的应用潜力。从碳化硅纤维、制备工艺、界面相和涂层等方面综述了国内外SiC/SiC CMC的发展现状,并基于SiC/SiC CMC的性能特点对其在航空发动机燃烧室火焰筒、混合器、涡轮罩环/静子叶片/转子叶片、喷管调节片等热端部件上的应用情况进行了介绍。  相似文献   
105.
徐文凯  朱俊杰  聂子玲  韩一  孙军 《航空动力学报》2019,46(5):100-106, 119
为了加快全碳化硅功率模块的实际工程应用,针对全碳化硅模块开通关断过程中电压电流变化率、栅极电压耦合、开通损耗和关断损耗开展了分析,并与传统IGBT功率模块进行了对比分析。在全碳化硅功率模块双脉冲试验的基础之上,研究了不同电压电流等级下开关瞬态特性和开关损耗,提取试验参数,获得了电压电流应力大小,为全碳化硅功率模块的工程应用提供有效参考。  相似文献   
106.
Hydrogenated nanocrystalline silicon carbide (SIC) thin films were deposited on the single-crystal silicon substrate using the helicon wave plasma enhanced chemical vapor deposition (HW-PECVD) technique. The influences of magnetic field and hydrogen dilution ratio on the structures of SiC thin film were investigated with the atomic force microscopy (AFM), the Fourier transform infrared absorption (FTIR) and the transmission electron microscopy (TEM). The results indicate that the high plasma activity of the helicon wave mode proves to be a key factor to grow crystalline SiC thin films at a relative low substrate temperature. Also, the decrease in the grain sizes from the level of microcrystalline to that of nanocrystalline can be achieved by increasing the hydrogen dilution ratios. Transmission electron microscopy measurements reveal that the size of most nanocrystals in the film deposited under the higher hydrogen dilution ratios is smaller than the doubled Bohr radius of 3C-SiC (approximately 5.4 nm), and the light emission measurements also show a strong blue photoluminescence at the room temperature, which is considered to be caused by the quantum confinement effect of small-sized SiC nanocrystals.  相似文献   
107.
在对碳化硅基变换器中的桥臂串扰产生机理进行深入分析的基础上,提出一种新型有源箝位桥臂串扰抑制方法,并构成适用于碳化硅(Silicon carbide,SiC)基桥臂电路的串扰抑制驱动电路。给出其等效电路模态分析,讨论了关键参数的设计方法。设计制作了串扰抑制驱动电路模块板,并在1kW永磁同步电机(Permanent magnet synchronous motor,PMSM)驱动实验平台上进行了验证。实验结果表明,该方法能够有效抑制SiC基变换器中的桥臂串扰。  相似文献   
108.
通过化学气相沉积法在柔性碳泡沫骨架上沉积生长碳化硅涂层,研究碳化硅涂层对泡沫材料的力学性能以及隔热性能的影响。利用SEM、XRD、压汞仪、电子万能试验机及导热分析仪分别对碳泡沫复合碳化硅涂层前后的微观形貌、物相组成、孔隙结构、抗压强度及导热系数进行测试。结果表明,碳泡沫骨架表面生长β-碳化硅涂层,随着碳化硅厚度增大:三维泡沫骨架结构存在的孔隙尺寸减小,孔隙率从99.68%下降至58.39%;泡沫试样压缩特性由类弹性形变转变为塑性形变,压缩强度从0.02MPa增至3.14MPa;单位热量传递截面积增大,传热量增大,试样导热系数从0.026 W/(m·K)升高至0.101 W/(m·K)。  相似文献   
109.
为了更好地评估碳化硅(Silicon carbide,SiC)MOSFET在功率变换装置中的性能,需要建立精确的SiC MOSFET模型。针对传统的SiC MOSFET的建模方法的不足,在Matlab/Simulink环境中提出了一种基于先进迁移率模型的SiC MOSFET模型。利用Matlab/Simulink强大的数学处理能力和丰富的模块功能,该模型考虑了实际SiC/SiO_2界面特性的影响。利用SiC MOSFET的产品手册中的实测曲线和所搭建的实验电路的测试结果验证了所建立模型的准确性。基于所建立的模型,研究了SiC/SiO_2非常重要的界面参数——界面陷阱电荷对SiC MOSFET温度特性的影响;从模型和实验上对比了SiC MOSFET与Si MOSFET在开关电路中瞬态温度的变化,结果显示碳化硅功率器件具有非常优秀的温度特性。  相似文献   
110.
随着开关频率的增大,寄生电感对碳化硅(SiC)器件动态开关过程的影响程度也越来越大,无法充分发挥其高速开关下低开关损耗的性能优势。本文采用理论定性分析与实验定量研究相结合的方法,考虑相关寄生电感,对SiC MOSFET基本开关电路建立数学模型,确立影响开关特性的主要因素,然后通过SiC器件高速电路双脉冲测试平台,对各部分寄生电感对SiC器件开关性能的影响进行系统研究,揭示寄生电感对SiC MOSFET开关特性的影响规律。在此基础之上,根据SiC高速开关电路实际布局的限制,在布局紧凑程度或回路走线总长度相对不变的情况下,对各部分寄生电感的匹配关系进行研究,归纳出SiC器件开关过程受寄生参数影响的特性规律,从而指导SiC基高速开关电路的优化布局设计。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号