首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3315篇
  免费   1187篇
  国内免费   297篇
航空   3231篇
航天技术   315篇
综合类   479篇
航天   774篇
  2024年   24篇
  2023年   125篇
  2022年   160篇
  2021年   153篇
  2020年   161篇
  2019年   166篇
  2018年   119篇
  2017年   124篇
  2016年   152篇
  2015年   150篇
  2014年   178篇
  2013年   167篇
  2012年   226篇
  2011年   216篇
  2010年   188篇
  2009年   200篇
  2008年   198篇
  2007年   156篇
  2006年   127篇
  2005年   135篇
  2004年   132篇
  2003年   132篇
  2002年   91篇
  2001年   142篇
  2000年   102篇
  1999年   105篇
  1998年   89篇
  1997年   107篇
  1996年   105篇
  1995年   107篇
  1994年   83篇
  1993年   81篇
  1992年   81篇
  1991年   67篇
  1990年   55篇
  1989年   58篇
  1988年   59篇
  1987年   25篇
  1986年   14篇
  1985年   13篇
  1984年   5篇
  1983年   7篇
  1982年   4篇
  1981年   7篇
  1980年   3篇
排序方式: 共有4799条查询结果,搜索用时 125 毫秒
261.
针对锥形钝体稳定的甲烷-空气预混湍流火焰复杂的熄火过程,采用大涡模拟(LES)与输运方程概率密度函数(TPDF)湍流燃烧模型相结合的模拟方法,研究远离熄火、近熄火及熄火点的火焰和释热率(HRR)数值变化情况,定量分析熄火判据。结果表明:冷态速度模拟结果和实验的相对均方根误差在10%以内,热态误差在20%以内;释热率是否出现在OH和CH2O重叠的区域,是判断熄火的一个重要参数;远离熄火时,释热率高的区域主要沿内侧剪切层出现;近熄火工况下,释热率在流向轴上闭合,回流区下游也出现较大的释热率;熄火点工况下,较大释热率的区域在回流区下游和上游均有出现;模拟预测的熄火情况和实验PLIF结果一致;平均释热率可作为判断熄火的定量依据,即当钝体后方0.2d处内侧剪切层平均释热率与回流区平均释热率的比值小于4时,发生熄火。   相似文献   
262.
针对长深比为10.0的过渡型凹腔在隔离段入口马赫数为3.0条件下存在的冷流自激振荡现象,提出了一种凹腔内增加肋条抑制振荡的方案。通过试验和数值计算,对该方案抑制振荡的效果进行了检验,并分析了肋条增加前后燃烧室流场结构和燃烧性能的差别。研究发现:通过在凹腔内增加肋条能够消除过渡型凹腔冷流工况下存在的175.8 Hz的自激振荡,燃烧流场也更加稳定;增加肋条后凹腔的稳焰能力有所降低,部分在凹腔未完全燃烧的煤油进入扩张段后继续发生反应,从而使燃烧区向下游延伸、增大,发动机的燃烧效率和净推力分别降低5.4%和8.9%,但推力更加平稳;燃烧室一维平均热流密度峰值由2.9 MW/m2降低至1.8 MW/m2,燃烧室的热环境大幅改善。  相似文献   
263.
基于CFD理论,利用Fluent求解软件,借助超级计算机强大的并行运算能力对航空弧齿锥齿轮副风阻功率损失进行仿真计算。采用局部综合法建立弧齿锥齿轮副三维模型,选用RNG k-ε湍流模型,考虑平均流动中的旋流流动情况,与标准k-ε模型相比,RNG通过修正湍流黏度并很好地处理了高应变率以及流线弯曲程度较大的流动。齿轮边界运动通过UDF(user-defined functions)函数驱动,同时采用动网格模拟流场形状由于边界运动而随时间改变问题。最后得出无挡风罩和不同挡风罩配置下的齿轮副风阻功率损失,证实了合理安装挡风罩能够有效降低齿轮风阻损失,并分析多组仿真实验间的减速器内流场压力、速度、湍流动能云图变化,得出了最优化的挡风罩配置,以求最小化风阻功率损失,文中减阻效果最好的挡风罩能降低55.3%的齿轮风阻损失,此时挡风罩间隙为1 mm,为工程实际应用挡风罩的设计提供了参考。  相似文献   
264.
应用三维粒子动态分析仪 (3D PDA)测得了矩形截面三分支联接的三维速度分布。在测量中 ,经过理论分析与对比试验 ,选择了蚊香烟雾作为散射粒子。实验结果表明 ,在只有支管进气的情况下 ,在总管的封闭端和支管下游总管壁面处产生了回流 ;以及气流从支管进入总管后由于截面扩张在总管横截面上所诱发的二次流 ,并且二次流现象只发生在支管下游附近的总管横截面上。  相似文献   
265.
提出了利用高焓气体自发光作为高超声速流场显示的方法,介绍了在使用高焓运行的激波风洞中,对二维模型的高超声速绕流流场使用此种方法的初步结果,可观察到二维棱形柱的尾流和马赫波的相交。结果表明此种方法不需外加光源,对于结构限制无法设置透明部件的模型,无疑是简单可行的。  相似文献   
266.
分别运用SST(Shear Stress Transport)、SST-SAS(Scale-Adaptive Simulation)、两种变fk(模化湍动能的比例)函数的SST-PANS(Partially Averaged Navier-Stokes)湍流模型对Re=3900的圆柱绕流进行了数值研究,重点从湍流结构捕捉、气动力计算、涡黏性控制等方面,比较了SAS与PANS两类RANS/LES混合模型的计算能力,并通过不同网格计算分析了模型的网格敏感性。数值结果表明:SAS及两种变fk方法的PANS模型均具有求解小尺度涡运动的能力,并能较好地反映出绕流尾迹的三维非定常特性,同时PANS模型能捕捉到更多的非定常结构;SAS模型中自适应尺度Lvk立足于当地流动,对网格依赖较小,计算的湍动粘度分布更合理,能够更好地计算剪切层及回流区;两种PANS模型网格独立性较差,出现了雷诺应力不足的现象;类DES可变fk函数构造相对简单,所得fk分布更准确,使用tanh函数计算的尾迹区fk值偏低,对流场调控能力稍差。  相似文献   
267.
燃烧室头部激励的等离子体强化燃烧特性实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
胡长淮  何立明  陈一  张磊  费力  赵志宇 《推进技术》2021,42(12):2762-2771
等离子体助燃是一种新型的强化燃烧技术,近年来受到国内外学者的广泛关注。本文开创性地研制了基于旋转滑动弧等离子体的强化燃烧头部,建立了某型航空发动机三头部燃烧室实验件的等离子体助燃实验平台,验证了该等离子体强化燃烧技术应用于型号发动机燃烧室的可行性。实验研究等离子体助燃在不同余气系数和不同输入电压条件下对平均出口温度、燃烧效率、温度分布系数以及熄火边界的影响。实验结果表明,与正常燃烧相比,施加等离子体助燃后的燃烧效率有明显的提高,在输入电压为U0=240V,余气系数为 α=0.8时,等离子体助燃的燃烧效率提高3.24%。实施等离子体助燃后,燃烧室出口温度分布场分布得到明显的改善,在富油工况α=0.8,出口温度分布系数减少39.8%。等离子体助燃输入电压越高熄火边界扩展程度越明显,相比于正常工况条件下,等离子体助燃U0=240V的熄火边界扩宽了7.34%。  相似文献   
268.
安慧 《太空探索》2011,(2):46-49
发展高超声速武器是2010年的一个热点2010年,世界武器装备发展的一个热点是所谓的高超声速武器。高超声速飞行是指飞行器的飞行马赫数大于5的飞行。美国发展以超声速燃烧冲压发动机为核心的高超声速技术,自上世纪50年代末开始,已经50多年了。在这过程中,它的发展态势一直是时高时低,不大顺利。其困难之处,就在于超燃冲压发动机的工作,就像要在12级飓风中点燃一支蜡烛一样困难。2010年5月26日,美国空军研制的高超声速巡航导弹的验证飞行器X-51A进行了飞行试验。媒体的广泛报导,将  相似文献   
269.
设计了一台爆轰环腔外径100mm、内径80mm、长117 mm的不带有尾喷管的旋转爆轰发动机燃烧室,并进行了实验和数值模拟研究,来了解不同当量比下的燃烧和流动特性。在该燃烧室头部,空气通过60个直径2mm孔轴向喷射,氢气通过2mm宽环缝喷射。氢气和空气最大供给总压分别可达12和10.5MPa。实验发现,当量比大于2时,燃烧发生在燃烧室以外,为爆燃;当量比接近于1时,燃烧室内存在多个反向旋转爆轰波,爆轰波平均速度较低,不超过1000m/s;当量比小于0.58时,仅有一个爆轰波准稳态旋转。在当量比为0.55时,旋转爆轰波传播速度为1274m/s。在当量比为1时,进行了17s无热防护的旋转爆轰发动机实验,未发现燃烧室有明显烧蚀。数值模拟表明在流量为400g/s时,有3个爆轰波同向旋转,外壁面侧传播速度约为1998m/s。  相似文献   
270.
基于RBF神经网络的航空发动机故障诊断模型   总被引:1,自引:1,他引:1  
利用某型发动机地面定检状态实测数据作为学习样本,采用径向基函数(RBF)神经网络建立发动机的故障诊断模型。通过该模型对起飞状态实测的发动机参数进行了辨识,结果表明:这种方法具有训练时间短、学习速度快、诊断精度高等优点。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号