首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2107篇
  免费   534篇
  国内免费   316篇
航空   2161篇
航天技术   212篇
综合类   308篇
航天   276篇
  2024年   16篇
  2023年   79篇
  2022年   101篇
  2021年   90篇
  2020年   91篇
  2019年   101篇
  2018年   72篇
  2017年   87篇
  2016年   88篇
  2015年   99篇
  2014年   100篇
  2013年   94篇
  2012年   114篇
  2011年   114篇
  2010年   95篇
  2009年   107篇
  2008年   115篇
  2007年   93篇
  2006年   71篇
  2005年   81篇
  2004年   78篇
  2003年   59篇
  2002年   91篇
  2001年   75篇
  2000年   80篇
  1999年   59篇
  1998年   62篇
  1997年   70篇
  1996年   81篇
  1995年   54篇
  1994年   51篇
  1993年   65篇
  1992年   46篇
  1991年   65篇
  1990年   70篇
  1989年   74篇
  1988年   49篇
  1987年   4篇
  1986年   4篇
  1985年   6篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1980年   1篇
排序方式: 共有2957条查询结果,搜索用时 484 毫秒
941.
固体火箭发动机熔渣沉积数值模拟   总被引:2,自引:2,他引:2       下载免费PDF全文
向红军  方国尧 《推进技术》2002,23(5):366-369,374
为了探求熔渣沉积的机理,采用欧拉-拉格朗日丽相方法模拟带潜入喷管的固体火箭发动机两相内流场。通过对发动机工作后期六个时刻的两相流动与粒子轨迹计算,得到了三种Al2O3重附着率(0.2,0.4,0.6)下的潜入喷管背壁熔渣沉积总量分别为0.14%,0.48%和0.91%。提出了减少熔渣沉积的一些途径。  相似文献   
942.
非均匀超声来流二维压缩面的优化设计   总被引:1,自引:1,他引:1       下载免费PDF全文
通过数值分析和风洞实验,研究在非均匀来流条件下,单级斜板型面变化对下游流场的影响。研究结果表明,小进口角,大出口角之凹型面具有较高的总压恢复。但是,曲壁面对降低出口处之静压畸变不利。折衷的选择为:以凹型面作为斜板的前段,其后续一平直段,以达到提高总压恢复,保持较低总静压畸变之目的。  相似文献   
943.
固体火箭发动机燃烧室中的颗粒轨迹   总被引:6,自引:2,他引:6       下载免费PDF全文
何洪庆  周旭 《推进技术》1999,20(5):25-29
用气相与颗粒场耦合的轨迹模型法计算了固体火箭发动机燃烧室两相流中的颗粒运动轨迹。结果表明: 颗粒轨迹受颗粒尺寸大小、颗粒初始速度的大小和方向以及气相运动特性等影响。燃烧室中的两相流动是一种非常滞后的非平衡流动。颗粒尺寸越大, 惯性越大, 随流性越差。尺寸相差较大的颗粒可能有完全不同的轨迹。在一定条件下,颗粒会穿过通道的中心线,甚至打到对面壁上并反弹。颗粒会受气相旋涡的影响, 甚至有可能卷入旋涡  相似文献   
944.
王肖  谢文忠  阳未  张德平 《推进技术》2020,41(2):324-333
本文通过对典型二元超声速进气道进行数值仿真,研究了内收缩段中泄流位置对进气道自起动性能及抗反压能力的影响规律和影响机制。研究结果表明:泄流腔改善进气道自起动性能和抗反压能力的内在机制不尽相同,泄流腔位置决定了进气道在临界不起动状态下的泄流量、临界不起动模式和临界反压状态下的泄流量,其中临界不起动状态下的泄流量和临界不起动模式共同影响进气道的自起动性能,而进气道的抗反压能力则主要由临界反压状态下的泄流量决定。在本研究范围内,当Lc=0.31时,进气道自起动性能最好,而当Lc=0.15时,临界压比和总压恢复系数最高。  相似文献   
945.
为了高效精确量化来流条件变化对涡轮叶片性能的影响,发展了一种基于自适应抽样技术的非嵌入式多项式混沌(NIPC)模型,并通过函数试验对自适应NIPC模型进行了验证。在不同尺度来流角变化下,用该模型量化涡轮叶栅能量损失系数的不确定性变化,同时与直接蒙特卡洛模拟和灵敏度分析进行对比。通过流场统计分析揭示来流角变化对气动不确定性的影响机理。结果表明:自适应NIPC在不同尺度来流角扰动下均能快速准确量化能量损失系数变化;能量损失系数不确定性变化对来流角扰动是非线性依赖关系;叶片通道内的激波对来流角变化最为敏感,是引起能量损失系数不确定性变化的主要因素。  相似文献   
946.
基于非结构重叠网格的螺旋桨滑流非定常数值模拟   总被引:2,自引:2,他引:2  
基于各向异性非结构混合网格及多套网格重叠技术,通过求解非定常雷诺平均Navier-Stokes(URANS)方程,分别研究了螺旋桨动力特性和螺旋桨滑流对涡桨飞机气动特性影响。运用物面相交准则实现多套网格间的挖洞,采用距离权和三线性插值技术传递重叠区变量信息,并针对定轴旋转优化了网格重叠边界。采用双时间步求解控制方程,内迭代计算采用LU-SGS(lower-upper symmetric Gauss-Seidel)方法。模拟了单独螺旋桨旋转的非定常流动,计算的拉力系数和扭矩系数与试验结果一致,表明采用的数值方法和网格技术能有效模拟螺旋桨滑流效应。数值模拟了某涡桨飞机,对比了有无滑流下飞机的气动特性,给出了滑流对飞机影响。结果表明:滑流导致其后部气流加速和旋转,改变飞机气动特性,增大飞机的阻力和俯仰力矩,导致气流下洗,影响机翼及平尾压力分布。   相似文献   
947.
为了获得在设计工况下性能最佳的叶型,提出一种三维单向气-固耦合迭代设计方法。对三维气动设计得到的热态叶型(记为RT)进行单向气-固耦合计算,获得设计点流场特性和热态叶型变形量。采用基于面积平均的三维插值造型方法,分别获得进行机匣处理和不进行机匣处理的冷态叶轮(分别记为RC和RC-tip)。对冷热态叶轮流场的数值分析结果表明:与热态叶轮相比,冷态叶轮在设计转速下堵塞点流量提高1.93%;冷态叶轮的叶片最小负荷下降约30%;在低转速下,冷态叶轮的性能曲线优于热态叶轮;说明通过该设计流程得到的冷态叶轮在叶片负荷和流通能力等方面实现了优化。   相似文献   
948.
水下点火固体火箭发动机两相流流场数值分析   总被引:1,自引:0,他引:1  
乌岳  李卓  江晓瑞 《航空动力学报》2018,33(10):2508-2514
利用FLUENT软件,使用湍流模型和VOF(volume of fluid)模型对水下点火固体火箭发动机的气液两相流场进行数值分析,对点火初期喷管中燃气的流动过程和燃气泡的发展过程进行了仿真,数值模拟了固体火箭发动机尾流场燃气密度、压力和温度的分布规律。研究表明:点火初期,喷管内流场将有一个完整激波建立的过程,除此之后的喷管尾流区域,由于气体受到压力扰动的影响,激波结构被破坏,没有形成连续的膨胀—压缩波;射流过程中燃气泡头部一直保持较大直径,中部燃气通道存在随轴向周期性的膨胀-压缩现象;喷管尾流区,各流动参数出现不同程度的振荡现象:喷管出口燃气密度受外界水的压缩及传质传热的影响,出现峰值后逐渐稳定;喷管出口燃气总压由于受水环境的急剧压缩,在喷管出口附近形成一个高压区;喷管出口燃气温度经三次周期变化后,温度逐渐降至1750K以内。   相似文献   
949.
对一台高负荷跨声速单级风扇进行了非定常数值模拟.并将BVF(boundary vorticity flux, 边界涡量流)诊断方法应用于非定常条件下的转静干涉研究中.结果表明BVF不仅能够清晰地捕捉到转静干涉对流场的影响, 指出转子叶排的尾迹干扰是引发下游叶排通道流场非定常特性的最主要因素, 还能够根据叶片表面出现的一些细节, 结合静压、熵等分析方法, 找出动叶的叶尖和静叶的叶根在转静匹配中存在的问题.表明BVF诊断方法能够反映出转静匹配的状态好坏, 并指出改进设计的方向, 是一种能够有效找出对流场产生负面影响的根源, 并指出削弱甚至消除这些负面影响办法的新型诊断方法.   相似文献   
950.
飞机表面在过冷水滴持续撞击下存在未冻结的液态水,液态水在气流驱动下向后发生回流。流动过程中水膜表面波动改变了液体的质量分布,进而影响结冰过程的传热特性。本文针对风速在16.5~45.5 m/s和水膜雷诺数在24.17~96.69范围内,采用了数字图像投影(Digital image projection,DIP)技术进行非侵入式测量,观测平板水膜流动中表面波在全视域内波形发展的过程。同时针对视域内的瞬时信号对波动特性进行分析,阐述了气-液界面波参数随风速和水膜雷诺数的变化,包括波峰高度、波峰频率、波速和波峰间距等。结果表明,表面波在水膜流动过程中呈现多种形态,风速增大会破坏原有的周期性波动加剧形态变化,流量增加会提高界面稳定性维持周期性波动。对水膜表面波动特性研究有助于揭示水膜流动过程中波形变化的物理机制,用于优化冰形预测和防冰系统设计。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号