首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1975篇
  免费   420篇
  国内免费   211篇
航空   1586篇
航天技术   370篇
综合类   240篇
航天   410篇
  2024年   19篇
  2023年   75篇
  2022年   92篇
  2021年   110篇
  2020年   110篇
  2019年   151篇
  2018年   134篇
  2017年   139篇
  2016年   110篇
  2015年   108篇
  2014年   118篇
  2013年   111篇
  2012年   126篇
  2011年   144篇
  2010年   92篇
  2009年   120篇
  2008年   84篇
  2007年   102篇
  2006年   107篇
  2005年   67篇
  2004年   65篇
  2003年   57篇
  2002年   38篇
  2001年   42篇
  2000年   23篇
  1999年   23篇
  1998年   22篇
  1997年   23篇
  1996年   32篇
  1995年   29篇
  1994年   23篇
  1993年   12篇
  1992年   20篇
  1991年   11篇
  1990年   20篇
  1989年   9篇
  1988年   5篇
  1987年   6篇
  1986年   13篇
  1985年   3篇
  1984年   1篇
  1983年   3篇
  1982年   3篇
  1981年   3篇
  1980年   1篇
排序方式: 共有2606条查询结果,搜索用时 250 毫秒
151.
以提高发散孔板冷却效率为目标,借助于红外热像仪开展了发散冷却效率实验研究,分析了孔偏转角、孔倾斜角、吹风比等因素对发散孔板冷却效率的影响。研究结果表明:发散孔倾斜角度较小时,偏转角对冷却效率的分布无明显影响;随着倾斜角增大,偏转角减小,气膜层覆盖更均匀,冷却效果变好;倾斜角为0°时,随着偏转角减小,冷却效果反而变差;随着吹风比的增加,发散孔板冷却效率增大,当吹风比达到1.8左右时,绝热冷却效率最高。小吹风比时,偏转角对冷却效果的影响比较微弱,吹风比比较大时,偏转角对冷却效果的影响才比较显著;不论偏转角多大,倾斜角为30°时的冷却效果最佳。  相似文献   
152.
李轩  徐旭 《航空动力学报》2016,31(6):1511-1520
为了使氢氧燃烧加热器满足自由射流试验台工作需要并获得均匀的出口气流参数,采用同轴剪切式7个喷嘴轴对称构型喷注器,利用CFD仿真软件对其进行了三维反应流场计算,燃烧模型采用氢氧单步反应模型,获得了设计工况下的参数.计算结果表明:燃烧效率随着中心喷嘴与外围喷嘴距离L与喷注面板半径R之比(L/R)的增大先上升后下降;喷注面板的温度随着L/R的增大而降低,最终维持在600K左右;加热器出口的氧气摩尔分数以及总温的均匀性基本不随着L/R变化而变化;出口主流区的马赫数在6左右满足设计要求.在各个喷嘴的影响区域大致相等时,加热器综合性能良好.氢氧速度比越大,完全燃烧所需区域越短,喷注面板温度越高.与单喷嘴、19个喷嘴的加热器比较发现7个喷嘴的构型较为合理.   相似文献   
153.
周莉  孟钰博  王占学 《推进技术》2021,42(1):103-113
为了研究S弯收扩喷管的流动机理,数值模拟了不同喷管落压比(NPR)和S形收敛管道出口面积比(A72/A8)对S弯收扩喷管内流动的影响。结果表明:当S弯收扩喷管处于高度过膨胀状态时,随着NPR升高,非对称分离逐渐转变为对称分离,λ型激波转变为马赫盘结构,气动性能下降,推力矢量角减小;随着NPR继续上升,激波从喷管内移动到喷管出口边缘,并逐渐转变为膨胀波,气动性能上升,推力矢量角减小至0°后保持不变。在完全遮挡高温部件的低可探测准则的约束下,出口面积比A72/A8的变化主要对S弯收扩喷管收敛段的流动特性产生显著影响,体现在S弯收扩喷管内的局部加速及二次流分布。S弯收扩喷管的气动性能随着A72/A8增大而提高,但当A72/A8增大至1.8时,第一弯管道出口上壁面发生流动分离,气动性能显著下降。  相似文献   
154.
韦宏  祖迎庆 《航空动力学报》2021,36(11):2331-2343
在真实密度比条件下对单排和三排的扇形气膜孔的传热和流阻特性进行了实验研究。采用压敏漆(PSP)技术对单/三排定出口宽度的扇形孔进行风洞实验,研究了在真实密度比条件下不同孔形参数的扇形气膜孔的传热和流阻特性的差异,得到了不同孔形参数的扇形孔出现冷气射流吹离热侧壁面的大致临界吹风比以及实现展向平均气膜冷却效率最高的孔型结构参数。实验结果表明:在所研究的孔形参数范围内,扇形孔在吹风比小于1.5时没有出现冷气射流吹离壁面的现象,且倾斜角为20°、扩散角为15°的扇形孔的气膜冷却性能最好;而当吹风比为2.0时则出现了不同程度的吹离热侧壁面的现象,且倾斜角为25°、扩散角为10°的扇形孔的气膜冷却效率最大。此外,倾斜角为25°、扩散角为13°和倾斜角为30°、扩散角为10°的扇形孔流量系数最高。   相似文献   
155.
为了研究类似SABRE3结构的深冷组合循环发动机,建立了基于部件法的发动机设计点热力学计算模型,提出了发动机氦循环新的循环效率和循环特征参数的定义。考虑发动机参数的物理限制条件及不同工质循环之间的相互影响,求解得到了空气路、氦气路重要参数的设计可行域。在可行域内开展了空气路和氦气路的循环分析,获到了冷却当量比、性能参数等主要参数的分布结果。结果表明:此发动机空气热功转换比ηt2为0.02~0.746。氦循环设计可行域受ηt2及换热器热负荷限制;循环起始温度和热负荷限制确定的情况下,ηt2越低氦循环可行域越窄。降低发动机冷却当量比的关键是:提高换热器1的氦出口温度以降低氦流量;当换热器1和换热器2的氦出口温度同时取得最大值时,冷却当量比取得最小值。换热器1和2的氦出口温度分别取1200K和1300K时,空气路可行域内冷却当量比为0.917~2.64。  相似文献   
156.
针对航空发动机射流预冷试验中气流温度难以测量的问题,设计了1 种温度探针,并提出了测温方法,给出了计算气流 总温的修正公式。在射流预冷试验台上开展了试验验证,该试验台具有加温、喷射冷却水、使用温度探针测量喷水后混合气流温度 的能力。测温试验结果表明:除临近机匣内壁面的测点外,当水气比小于5.5%时,温度探针的测点不遇水。为验证测量方法的准确 性,在不同水气比条件下对测量结果与数值模拟结果的偏差进行了比较,并针对截面平均总温的偏差建立拟合曲线。比较结果表 明:当水气比在3%以下时,测试结果与模拟结果基本吻合,证明了本测试方法具有可行性。  相似文献   
157.
为减少径向预旋系统的流动损失,运用数值模拟方法对不同盘腔进气位置的径向预旋系统进行分析,结果表明:随着盘腔进气径向位置的增加,预旋喷嘴出口气流旋流比随之逐渐减小,径向预旋系统的温降系数及总压损失系数均随之逐渐增大。当旋转雷诺数等于7.9×106,盘腔进气位置由低位向高位变化时温降系数最大可增加525%,同时总压损失系数增加3.93%。径向预旋系统内比熵增主要发生在预旋喷嘴和共转腔,约占系统总体比熵增的80%。随着盘腔进气径向位置的增加,径向预旋系统总体比熵增降低,预旋喷嘴比熵增占比逐渐增大,共转腔比熵增占比逐渐减小。  相似文献   
158.
针对燃气轮机低污染排放要求,在为使用气体燃料设计的低排放微型燃气轮机燃烧室单头部实验件上进行了燃烧特性实验,对比分析了燃料喷口位置、数量,值班级与主燃级燃料分配比例和不同空气流量分配方式时的燃烧效率和污染物排放特性。结果表明:改变燃料喷口的位置、数量可以改变燃料与空气的混合特性,对燃烧特性产生较大的影响;值班级与主燃级燃料流量分配比例的变化,会导致各燃烧区当量比的变化,主燃级燃烧区当量比降低至08以下有利于降低污染物排放;通过改变燃烧室空气流量分配方式,可以降低主燃级燃烧区的当量比,使NOx排放降低至272 mg/m3,燃烧效率达到986%。但用于掺混的空气流量的降低会使出口温度分布系数由021升高至024。  相似文献   
159.
为了确定实际飞行使用条件下,发动机状态变化时,进排气系统损失对飞机气动特性的影响,本文针对翼吊短舱形式的发动机开展了缩比模型风洞试验,分别进行了基本构型与起飞构型下,马赫数0.1、0.15、0.2,攻角0°~15°变化,5种不同发动机状态条件下的风洞试验,通过数据分析,明确了该类型发动机推/阻力划分的基本方法,分析了发动机状态变化时飞机气动特性的改变及修正方法。风洞试验结果表明:发动机状态变化对飞机升阻特性影响明显,飞机设计研发阶段不能仅对短舱通流模型,或单一发动机状态下的动力短舱模型进行损失修正,必须建立合理的推/阻划分体系,对实际使用条件下,发动机状态变化引起的进排气损失进行修正。  相似文献   
160.
动力系统的进排气效应是影响翼身融合布局飞机俯仰力矩特性和全机纵向配平的重要因素。为了研究动力对全机俯仰力矩的影响,基于飞行动力学方程,提出了一种动力影响计算方法。以某翼身融合布局缩比模型为研究对象,结合风洞试验数据,分析了模型飞行试验中爬升段、平飞段和下降段动力对全机俯仰力矩系数的影响,同时计算了迎角测量误差对俯仰力矩计算结果的影响。分析结果表明:动力使该翼身融合布局缩比模型低头力矩增加,会对全机纵向配平产生不利影响;迎角测量精度对俯仰力矩计算结果有较大影响。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号