全文获取类型
收费全文 | 3731篇 |
免费 | 1163篇 |
国内免费 | 444篇 |
专业分类
航空 | 3581篇 |
航天技术 | 464篇 |
综合类 | 476篇 |
航天 | 817篇 |
出版年
2024年 | 121篇 |
2023年 | 185篇 |
2022年 | 243篇 |
2021年 | 249篇 |
2020年 | 263篇 |
2019年 | 248篇 |
2018年 | 176篇 |
2017年 | 234篇 |
2016年 | 232篇 |
2015年 | 193篇 |
2014年 | 250篇 |
2013年 | 232篇 |
2012年 | 238篇 |
2011年 | 237篇 |
2010年 | 201篇 |
2009年 | 186篇 |
2008年 | 183篇 |
2007年 | 159篇 |
2006年 | 132篇 |
2005年 | 153篇 |
2004年 | 141篇 |
2003年 | 101篇 |
2002年 | 103篇 |
2001年 | 99篇 |
2000年 | 86篇 |
1999年 | 78篇 |
1998年 | 59篇 |
1997年 | 58篇 |
1996年 | 71篇 |
1995年 | 59篇 |
1994年 | 49篇 |
1993年 | 58篇 |
1992年 | 57篇 |
1991年 | 43篇 |
1990年 | 36篇 |
1989年 | 54篇 |
1988年 | 30篇 |
1987年 | 21篇 |
1986年 | 10篇 |
1985年 | 6篇 |
1984年 | 1篇 |
1982年 | 1篇 |
1981年 | 2篇 |
排序方式: 共有5338条查询结果,搜索用时 15 毫秒
201.
对稳态射流及脉冲射流冲击靶板时的流场特性结构进行了探索和分析。采用高频粒子图像测速技术,在射流管口到冲击靶板间距为6倍管径的条件下,对稳态射流进口雷诺数为6 000的稳态射流及脉冲频率为20 Hz的脉冲射流进行了实验测量,得到了射流核心区、壁面射流区及滞止区内的速度分布。研究发现:①由于射流剪切作用的影响,脉冲射流核心区的最大轴向脉动速度为稳态射流的3倍。②滞止区内,由于射流的剪切作用和壁面的滞止作用,导致了脉冲射流轴向速度梯度最大为稳态射流的2倍,同时,滞止区内的最大脉动速度是稳态射流脉动速度的3倍。③脉冲射流对壁面的卷吸以及旋涡的产生和传播过程,破坏了壁面射流区稳定的速度边界层。相比稳态射流,脉冲射流的流场增加了湍流相干结构的含能并产生周期性的大尺度卷吸涡。 相似文献
202.
为研究水下超声速过膨胀燃气射流的流场特性,在压力水筒中开展了大扩张比锥形喷管的固体火箭发动机水下点火实验,并基于雷诺时均Navier-Stokes(RANS)方法和流体体积(VOF)模型进行数值求解,分析了过膨胀燃气射流与水介质的相互作用过程。研究表明:超声速过膨胀燃气建立射流通道后,射流核心区长度随喷管落压比的减少而减少;射流核心区剧烈振荡,表现为高频的膨胀和收缩,振荡频率随喷管落压比的减小而增加,范围为100~200 Hz;射流边界不断振荡,并伴随波系结构变化,当过膨胀程度较大时,激波进入喷管使其发生流动分离现象,流动分离点周期性往复移动;分离区内压力脉动没有显著的特征频率,主要集中在100~600 Hz的宽频带,锥形喷管水下流动分离的简易判据为喷管出口压力不低于环境背压的0.44倍。 相似文献
203.
针对航天器设备因构成复杂引起的动力学分析模型建模困难问题,提出一种基于拓扑优化技术的有限元模型简化方法,以设备实测质量特性为约束条件,通过拓扑优化方法确定设备有限元模型可行设计空间中的材料分布,实现对结构刚度性能的模拟,获得满足动力学特性分析需要的简化的设备有限元模型。应用该方法创建了某星敏感器简化有限元模型,得到的星敏感器简化模型与产品实际质量、质心位置和转动惯量特性基本一致,并且前两阶频率分析值与试验值之间最大偏差约为30%。将该简化模型应用于其支撑结构的动态响应性能评估,两者组合体固有频率及加速度响应趋势的分析数据在450Hz以下的频率范围内与试验数据吻合较好,固有频率最大偏差约为39%。星敏感器简化模型的应用验证了基于拓扑优化技术的有限元模型简化建模方法的可行性,为航天器上复杂设备动力学分析有限元模型的简化建模提供了一种新的解决途径。 相似文献
204.
205.
非预混条件下的旋转爆轰燃烧室双波头演化过程数值模拟 总被引:1,自引:0,他引:1
针对旋转爆轰燃烧室双波头演化过程中流场结构变化的问题,对非预混条件下的旋转爆轰燃烧室从起爆到形成稳定的双波头过程进行了数值模拟研究。研究结果表明,从起爆到形成稳定爆轰过程,燃烧室主要经历了起爆、爆轰波对撞和稳定爆轰三个阶段;在爆轰波对撞阶段,首次对撞是两个爆轰波间的对撞,由于对撞点处缺少新鲜混合气,从而在对撞结束后衰减为两个压力波。第二次对撞是两个压力波间的对撞,因为在第二次对撞点附近存在新鲜混合气来支撑爆轰波的持续传播,故对撞结束后产生了一个爆轰波和一个较弱的压力波;第二次对撞发生后,燃烧室内的压力波反射叠加并形成局部高压区,此高压区压缩气体使气体温度升高,高温气体引燃混合气后,最终发展成为第二个爆轰波;稳定阶段,两个爆轰波均能稳定自持传播,爆轰波峰面压力可达1.45MPa,波后温度为2500K,爆轰波速度稳定在1738m/s,产生的推力与比冲分别为79.76N和2312.15s;斜激波的存在使燃烧室出口平面流场产生了较大波动。 相似文献
206.
207.
208.
209.
210.