首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1434篇
  免费   471篇
  国内免费   230篇
航空   1479篇
航天技术   135篇
综合类   256篇
航天   265篇
  2024年   24篇
  2023年   79篇
  2022年   113篇
  2021年   110篇
  2020年   110篇
  2019年   87篇
  2018年   74篇
  2017年   88篇
  2016年   90篇
  2015年   75篇
  2014年   103篇
  2013年   52篇
  2012年   67篇
  2011年   118篇
  2010年   95篇
  2009年   100篇
  2008年   89篇
  2007年   96篇
  2006年   51篇
  2005年   42篇
  2004年   42篇
  2003年   52篇
  2002年   38篇
  2001年   49篇
  2000年   35篇
  1999年   41篇
  1998年   31篇
  1997年   25篇
  1996年   33篇
  1995年   20篇
  1994年   19篇
  1993年   14篇
  1992年   20篇
  1991年   16篇
  1990年   14篇
  1989年   12篇
  1988年   4篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1981年   1篇
排序方式: 共有2135条查询结果,搜索用时 15 毫秒
971.
为了改善机匣内横流影响,提高冷气的热沉利用效果,设计了一种叶尖间隙控制系统新型悬浮管式冷却结构,并抽象出典型换热单元开展数值模拟研究。重点关注了悬浮管上冷却孔冲击雷诺数、冲击孔间距、冷却空气出流方式等对该冷却结构流动换热特性的影响。研究中发现:悬浮管相邻冲击射流之间会相互影响并形成"喷泉流"现象;随着悬浮管冷却孔冲击雷诺数减小、冲击孔间距增大,冲击靶面换热效果降低,"喷泉流"现象不再明显。同时由于悬浮管本体及盖板的空间限制作用,冲击腔中会形成沿周向、轴向的横流。研究结果表明,当机匣侧方位冷气出流时,机匣表面沿轴向的横流最为明显。相较于机匣侧面出流,盖板垂直出流以及盖板垂直/机匣侧面同时出流时,两高肋之间区域的换热得到明显加强。其中垂直出流时增幅最大,可达20%。  相似文献   
972.
基于Hertz接触理论,以内圈滚道表面存在局部剥落的球轴承为研究对象,对球轴承局部剥落故障所激起的非线性激励机理进行研究,分析球轴承双冲击现象激励机理。将滚动体与球轴承内外圈非线性接触特性纳入考虑,提出时变位移激励与时变接触力激励相耦合的球轴承局部剥落双冲击现象动力学模型。研究中采用Runge-Kutta数值积分法求解该二阶非线性动力学微分方程,并对故障球轴承仿真信号进行双冲击时间间隔特征验证。在不同转速和内圈剥落尺寸条件下开展仿真与实验研究,通过仿真和实测信号的双冲击时间间隔与理论双冲击时间间隔对比分析,仿真信号的双冲击时间间隔与理论值对比的误差结果皆小于2%,与实测信号的双冲击时间间隔值对比的误差结果皆小于12%;同时,仿真信号与实测信号具有很好的相似性,从而验证了该动力学模型的有效性。   相似文献   
973.
为了揭示欠膨胀激励射流的流动机理,以及考察不同喷压比下射流对相同激励的流动响应,采用大涡模拟方法,对喷压比NPR=5.60和9.34的欠膨胀定常射流和激励射流进行了三维数值计算。激励频率为定常射流中固有的轴对称频率=14.569kHz,激励形式为在射流喷管入口处施以正弦压力扰动。结果表明,特征频率激励影响射流的声场特征,缩小射流核心区的范围,减少射流近场的激波胞格数目,并影响射流气体与环境空气的混合。同时,激励射流的特征频率转变为激励频率及其高阶倍频,激励射流的主不稳定模态均为轴对称模态。其中,NPR=9.34的欠膨胀射流的主不稳定模态和外加压力扰动的形式相一致,射流与外加激励发生了更加剧烈的流动耦合和响应。这使得在NPR=9.34时,射流核心区长度减小得更多,压力脉动的振幅更大,激励对射流混合的增强作用更加明显。  相似文献   
974.
为探究端壁合成射流对高负荷涡轮叶栅中涡系结构和流动损失的影响,采用非定常数值模拟方法分析了不同激励参数下合成射流对Durham叶栅流动损失的控制效果以及涡系结构和流动损失的对应关系。结果表明,合成射流减小了前缘马蹄涡和通道涡的尺度,削弱了来自相邻叶片压力面的横向涡,略微增强了壁角涡,并间接削弱了壁面涡;在无量纲幅值和频率分别为0.073和1时,控制效果最佳,总压损失系数减小约为10.72%;从控制机理上讲,合成射流加强了主流和射流下游边界层的掺混,增加了边界层动量,从而削弱了马蹄涡;合成射流影响了叶片压力面的流动分离,改变了由于分离产生低能流体的位置和范围,从而削弱了横向涡。由于漩涡的削弱,流动损失也随之减小。  相似文献   
975.
横向间距与密度比对双射流气膜冷却特性影响   总被引:1,自引:2,他引:1  
使用压力敏感漆(PSP)测量技术对平板上的双射流气膜冷却结构进行了研究。双射流孔间横向距离分别为0、0.5、1.0;孔间流向距离保持为3.0。密度比分别为1.0、1.5、2.5,吹风比分别为0.5、1.0、1.5、2.0。研究了孔间横向距离与密度比对双射流气膜冷却效率的影响。结果表明:双射流孔间横向距离为0时,气膜横向覆盖受限;随横向距离增大,气膜覆盖范围增加;但在横向距离过大时,气膜覆盖变差。随密度比增加,射流吹离减弱,气膜冷却效率提高。在高密度比下,横向距离较大的双射流孔气膜冷却效率较高。   相似文献   
976.
为了研究带初始横流冷却管式阵列射流冲击换热特性,以基于机匣热变形控制的叶尖间隙控制系统为对象,试验研究了机匣外置多排冷却空气管结构中,初始横流雷诺数(0~8×104)对射流冲击机匣表面换热特性的影响。研究中发现,相比横流雷诺数,冲击雷诺数对靶面平均换热系数的影响更大,平均换热系数随着冲击雷诺数的增加显著提高。初始横流的加入,冲击滞止区发生了沿初始横流流向的偏移,削弱了靶面的冲击换热效果,局部换热数的峰值呈现出先减小后增加的规律。研究结果表明,当横流雷诺数超过4×104后,冲击滞止区下游出现一个"鱼尾形"的换热强化区域,且随着横流雷诺数增加,该鱼尾状区域范围逐步增大,靶面换热效果得到一定程度的提升。冲击孔间距越小,靶面局部和平均换热系数越大,此时横流的影响相对较小,在本文研究参数范围内,冲击孔间距比为4时,会获得更好的换热效果。  相似文献   
977.
本文对低速冲击下复合材料结构损伤的数值仿真模型进行了分类和评估。低速冲击模型由冲击过程模型和材料损伤演化模型两类子模型组合而成,列出了每类模型的关键要素及其处理方法,对常用的组合进行了整理与评述,并列出了文献中出现频率较高的6种仿真模型。完成了6种模型的两个算例的数值评估,评估结果表明:对于正交层合板算例6个模型均可较准确地预测损伤形状和面积;对于角铺设层合板算例,采用Puck准则、考虑剪切非线性、基于能量释放率的模型得到的分层损伤形貌更接近于试验结果。  相似文献   
978.
研究玻璃纤维增强铝合金层合板(glass fiber reinforced aluminum laminates,GLARE)在落锤低速冲击下的材料行为,建立ABAQUS有限元模型进行模拟并对其进行实验验证。针对纤维金属基体材料的特点,采用连续损伤模型(continuous damage model,CDM)分别给予落锤6.22 J、12.38 J和14.46 J的冲击能量,在ABAQUS中对模型设置相应的边界条件和载荷,得出落锤下落方向的速率-时间曲线和能量损耗曲线图。考虑金属层与复材层间黏结层的作用,采用凝聚层(cohesive)将金属层和复合材料层粘接。在仿真中观察层间的纤维和基体拉伸和压缩损伤状态及破坏情况,并与实验得出结果进行对比。结果显示:有限元仿真可以准确模拟落锤冲击之后GLARE板背面的裂纹和鼓包的实效情况以及基体和纤维的损伤情况,很好地预测复合材料内部的损伤情况。  相似文献   
979.
进行形状记忆合金(shape memory alloy,SMA)薄板不同冲击能量条件下低速冲击实验,以SMA 热力学本构模型为理论基础,通过数值手段对超弹性SMA 薄板的冲击响应进行仿真分析,探究冲击载荷作用下SMA 热力耦合行为特征。结果表明:数值仿真结果与实验数据吻合良好,有效表征了SMA 薄板冲击过程中的变形、相变、耗散、温变等热力耦合行为特征。  相似文献   
980.
超临界碳氢燃料的射流特性研究   总被引:2,自引:0,他引:2       下载免费PDF全文
针对未来先进航空发动机的超临界燃油喷射混合问题,采用纹影法对超临界正十烷(n-decane)/正戊烷(n-pent ane)混合物在静止环境中的射流激波结构进行试验,同时采用理论分析的方法研究了射流的相变途径和流量特性。纹影照片显示,在试验工况下射流在喷口附近呈现出马赫波等激波结构,燃料的压力是激波结构的主要影响因素。理论分析表明:在混合物的临界点附近,燃料压力较高时更有可能导致相变。由于物性的不同,大分子与小分子碳氢燃料的相变途径存在一定的差异,小分子燃料在喷射过程中更容易发生冷凝。采用1维等熵计算方法可以较精确地计算高温高压碳氢燃料的流量。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号