首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1078篇
  免费   569篇
  国内免费   44篇
航空   1451篇
航天技术   27篇
综合类   89篇
航天   124篇
  2024年   10篇
  2023年   65篇
  2022年   61篇
  2021年   62篇
  2020年   41篇
  2019年   49篇
  2018年   44篇
  2017年   71篇
  2016年   76篇
  2015年   74篇
  2014年   78篇
  2013年   73篇
  2012年   83篇
  2011年   82篇
  2010年   68篇
  2009年   56篇
  2008年   61篇
  2007年   45篇
  2006年   26篇
  2005年   23篇
  2004年   34篇
  2003年   37篇
  2002年   29篇
  2001年   30篇
  2000年   40篇
  1999年   36篇
  1998年   23篇
  1997年   30篇
  1996年   39篇
  1995年   20篇
  1994年   37篇
  1993年   25篇
  1992年   31篇
  1991年   25篇
  1990年   18篇
  1989年   28篇
  1988年   10篇
  1987年   7篇
  1986年   13篇
  1985年   8篇
  1984年   3篇
  1983年   9篇
  1982年   4篇
  1981年   3篇
  1980年   4篇
排序方式: 共有1691条查询结果,搜索用时 421 毫秒
81.
气液针栓式喷嘴在变推力液体火箭中有重要应用。采取实验与数值计算结合的方法系统研究了不同环境压力下的针栓式喷嘴的液膜破碎过程、喷雾锥角、回流区分布、压力和液滴粒径分布等雾化特性,揭示了环境压力影响液膜破碎的3个因素:气流冲击、环境气体密度和环境压力对液膜挤压作用。结果表明:喷雾锥角会随环境压力增加而增大,但该趋势会随压力的增加而逐渐放缓。喷雾整体形态呈现锥形,喷雾中心区域存在低压回流区,回流区的液滴数目较少,但液滴粒径比较均匀。液滴主要分布在气液作用面,下游的液滴粒径较大,外部的液滴粒径比内部的大。液体火箭在启动的瞬间,燃烧室压力变化剧烈,可能导致喷雾锥角发生大幅变化,引起推进剂空间分布不均匀,对燃烧性能产生影响,因此要避免或减小较差雾化效果的燃烧室设计压力区间。  相似文献   
82.
针对燃气轮机在实际运行过程中燃烧室进口速度分布不均匀问题,采用数值模拟方法对直流环形燃烧室开展数值模拟计算,分析了不同进气速度畸变位置与畸变强度下燃烧室的流场与温度分布特性,并给出了一种畸变条件下燃烧室性能预测模型。结果表明:不同进气速度径向畸变位置与畸变强度对扩压器内和机匣前段流场形态影响较大,燃烧室空气分配比例改变,温度分布有所差异。燃烧室工况改变对空气分配比例、燃烧效率和总压损失的影响不大。进气速度畸变对燃烧效率影响不大,主要影响到总压损失的变化。随着畸变程度提高,空气分配比例变化明显,总压损失随之增大。进气畸变对燃烧室出口温度分布的影响规律较为复杂,影响程度与进气畸变的不均匀度、畸变形式和工况密切相关,变化范围为-30%~20%。在此基础上,给出了适用于进气径向畸变条件下的燃烧室部件特性预测模型,经验证预测模型的误差在3.5%以下。  相似文献   
83.
为了研究中心分级贫油直喷燃烧室冷态流场特性及头部结构参数对中心回流区的影响,采用数值模拟方法对不同结构参数下的冷态流场开展对比研究,并对基准方案进行了试验验证。结果表明:副模收敛角度以及喷嘴轴向位置对回流区影响较小,副模旋流叶片角度以及主副模头部径向间距对回流区影响较大。随着副模旋流叶片角度增大,副模出口旋流加强,引起出口气流张角增大,使得中心回流区体积扩大;随着主副模头部径向间距增加,削弱了主副模出口气流在切向方向上的相互影响,主模出口气流得以充分发展,中心回流区体积扩大。  相似文献   
84.
陈柳君  乐嘉陵  张俊  黄渊  周瑜 《推进技术》2018,39(8):1821-1828
为深入了解燃烧室内流场,研究不同来流状态对燃烧室流场结构的影响,基于粒子成像速度仪(PIV)技术,对采用三级轴向旋流器的航空发动机燃烧室进行流场测量,分别在Case 1常温低压(0.49MPa)、Case 2常温中压(0.98MPa)、Case 3常温高压(1.64MPa)、Case 4全状态(高温813K高压2.78MPa)来流条件下进行。研究结果表明,同一燃烧室模型在不同速度、温度和压力来流下有基本相同的流场结构,但在中心回流区尺寸、角落回流区尺寸、主燃孔和掺混孔射流等细节方面仍有明显差异,来流压力较高的流场中心回流区向下游扩展更深入,角落回流区被压缩,主燃孔和掺混孔射流速度增加且进气比例增大。  相似文献   
85.
为满足新型燃烧试验需求,针对航空发动机燃烧室试验中单管试验器的特点,提出并设计了1种基于以太网的分布式测控系统。详细阐述了该系统的总体设计方案,分别从软件和硬件两方面研究分析了该系统的详细设计过程,并对其进行了测量不确定度分析。目前该系统已经完成试验前调试,并已顺利完成了多项单管燃烧室燃烧试验任务。结果表明:该系统可靠性高、稳定性良好、通用性强,满足试验器测控需求,具有较高的工程应用价值。  相似文献   
86.
地面燃气轮机单管燃烧室流量分配试验   总被引:2,自引:1,他引:1  
对设计的100kW地面燃气轮机单管燃烧室空气流量分配进行了试验研究。在常压环境下采用堵孔法分别得到了旋流器、主燃孔和掺混孔的流量特性曲线,分析得到燃烧室不同结构的流量系数;试验研究了不同进口流量条件下燃烧室的流量分配,测量得到了燃烧室总压损失。研究发现:随着进口空气流量的增加,燃烧室的流量分配比例基本保持稳定,并且与燃烧室的设计空气比例基本吻合;随着燃烧室进口流量(雷诺数)的增加,旋流器、主燃孔和掺混孔的流量系数呈线性降低;随着进口流量(雷诺数)的增加,燃烧室总压损失逐渐增大;对主燃孔和掺混孔的流量特性测量中,两种测量方法得到的试验结果稍有差别,总体上看两种测量方法的试验结果较为接近。通过对比分析证明两种试验测量方法真实可靠,该研究结果可为100kW地面燃气轮机燃烧室的设计与优化提供依据。   相似文献   
87.
针对某航空发动机在试车过程中多次出现加力筒体尾端局部区域异常变色现象,为了分析其故障原因,利用外观检查、材质分析和温色模拟试验等失效分析方法,确定了故障加力筒体变色部位经历了最高850℃左右的超温。为进一步评价故障加力筒体的可靠性,对其基体材料力学性能及组织演变规律开展研究。在TA12钛合金板材空冷状态下,从加热温度与组织及力学性能的关系分析结果表明:其力学性能随加热温度的升高呈先降低再提高的趋势,在800℃左右达到最低值,且力学性能变化趋势与组织形态演变呈明显的对应关系。根据加力筒体故障部位力学性能及可靠性明显降低的试验结果,判断该加力筒体不再适合继续参与服役试车,建议更换该故障件,并对替换件进行监控。  相似文献   
88.
针对航天器表面出气分子形成的环境散射返回流污染问题,利用试验粒子Monte Carlo方法对圆球和圆柱体简化航天器表面环境散射返回流进行数值模拟。其中,圆球出气表面的计算结果与已有的DSMC(Direct Simulation Monte Carlo)方法计算结果一致,验证了该方法的正确性。此外,对不同长径比的圆柱表面环境散射进行了计算和分析,结果表明:来流方向垂直于圆柱对称轴时,返回分子主要分布在圆柱体侧面的迎风部位;返回通量比随来流与出气分子质量之比的增加逐渐减小,随来流与出气表面温度之比、来流分子速度比和数密度的增加而增大;不同长径比条件下返回通量比相对于上述4个参数的变化具有相似性和递变性,短粗体的返回通量比最小,长细体的最大,正常圆柱体的则居中;返回通量比相对来流攻角的变化在不同长径比条件下不再具有相似性,而是取决于有效迎风面积。  相似文献   
89.
为研究富氢/富氧燃气同轴双剪切气-气喷嘴设计参数对燃烧性能和燃烧室热载的影响,采用正交试验设计方法对这些参数进行组合,数值模拟单喷嘴燃烧室流场,并以燃烧长度、燃烧室壁面和喷注面板处平均燃气温度为指标评价燃烧性能和热载.结果表明:燃氧速度比对燃烧性能和燃烧室热载影响最显著,中心氢流量比例对燃烧室热载影响非常显著,氧压降比对喷注面板处燃气平均温度的影响也很显著,而喷嘴出口壁厚对喷嘴性能影响不明显.燃氧速度比和氧压降比的交互作用对喷嘴性能有一定影响,而其他设计参数之间的交互作用对喷嘴性能影响非常小.最短燃烧室长度为117.9mm,最低壁面燃气温度及面板燃气温度分别为1637.7K和806.6K.   相似文献   
90.
数值研究低热值燃料环管燃烧室燃烧流场   总被引:2,自引:2,他引:0  
在任意曲线坐标系下对采用两种不同组分(天然气掺混氮气、一氧化碳)的低热值燃料环管燃烧室燃烧流场进行计算,结果表明低热值燃料的化学反应速率与其组分直接有关,燃料一氧化碳的燃烧效率高于天然气与氮气掺混物燃料,燃料组分变化对燃烧室燃烧效率与出口温度影响很大,因此选用合适的燃料十分重要.计算所得的燃烧室的燃烧效率和出口温度分布与试验数据符合较好,表明所用的数学模型与计算方法合理,计算程序可靠,可为低热值气体燃料燃烧室研制和优化设计提供有用的数据.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号