全文获取类型
收费全文 | 59篇 |
免费 | 24篇 |
国内免费 | 10篇 |
专业分类
航空 | 67篇 |
航天技术 | 2篇 |
综合类 | 15篇 |
航天 | 9篇 |
出版年
2024年 | 1篇 |
2023年 | 4篇 |
2022年 | 3篇 |
2021年 | 6篇 |
2020年 | 10篇 |
2019年 | 6篇 |
2018年 | 5篇 |
2017年 | 2篇 |
2016年 | 4篇 |
2014年 | 4篇 |
2013年 | 3篇 |
2011年 | 5篇 |
2010年 | 12篇 |
2009年 | 1篇 |
2008年 | 2篇 |
2007年 | 1篇 |
2005年 | 1篇 |
2003年 | 3篇 |
2002年 | 1篇 |
2001年 | 3篇 |
2000年 | 1篇 |
1997年 | 4篇 |
1995年 | 1篇 |
1994年 | 4篇 |
1992年 | 2篇 |
1991年 | 1篇 |
1990年 | 2篇 |
1988年 | 1篇 |
排序方式: 共有93条查询结果,搜索用时 15 毫秒
81.
涂料校准误差是温敏漆实验技术中的重要误差源。针对国产615/EP配方温敏漆实施校准实验,系统研究了校准过程中涉及的CCD曝光时间,图像平均幅数,噪点的强度、体积和数量,图像清晰度和模数转换位数等技术参数对校准精准度的影响。研究结果表明:噪点的强度、体积和数量对涂料校准精准度影响很大。在噪点数量少、强度弱的取图区域中,图像清晰度对校准精准度影响很小,单幅图像即可保证校准精准度的要求。为了获得较高的校准精准度,对于滨松ORCA-R2型CCD相机,建议采集图像灰度值大于相机满井值的32%,同时要求温敏漆风洞实验与校准实验中采集图像的位数保持一致。 相似文献
82.
陈少华%张加迅%杨素君%邹永军%王敬宜 《宇航材料工艺》2005,35(4):33-36
以在我国某型号卫星上应用的两种有机热控涂层——改进型S781铝灰漆和S956灰漆作为对象,首次就近地轨道原子氧环境对涂层性能(太阳吸收比αS和红外半球发射率εH)的影响进行实验研究。实验中采用同轴源原子氧装置,以近地轨道原子氧通量条件对涂层进行试验。结果表明,原子氧对涂层表面的侵蚀作用是造成涂层性能退化的主要原因,在相同的原子氧剂量下,涂层性能变化的程度与涂层组成成分的配比有关。 相似文献
84.
《燃气涡轮试验与研究》2016,(5):30-34
采用示温漆和热电偶两种方式,在全温全压试验中对航空发动机阵列预混燃烧室火焰筒壁温进行测试,获得火焰筒的壁温分布,并对不同峰值时间下示温漆判读结果与热电偶测试结果进行对比分析。研究表明:阵列预混燃烧室火焰筒壁温小于所用材料的许用工作温度;火焰筒试验峰值时间是影响示温漆测温判读的主要原因,为保证测试结果的准确性,应严格要求试验峰值时间与示温漆标定的峰值时间一致。 相似文献
85.
86.
87.
电器线圈高温浸渍工艺是在保留了传统浸渍工艺的基础上,提高浸渍温度,使电器线圈的预烘温度高出浸渍漆所含有机溶剂的沸点5~10℃,然后快速浸入处于常温甚至低温的浸渍漆中,浸渍过程可在数分钟甚至几秒钟内完成,使浸渍工时缩短1/2,提高了质量,降低了成本。 相似文献
88.
89.
近十几年来,由于压敏漆(Pressure Sensitive Paint、PSP)测量技术的不断完善与发展,国际上主要空气动力试验机构逐步将其应用于2 m量级工程型风洞,完成模型表面压力测量、模型表面流动显示与 CFD 结果验证。在2.4m跨声速风洞建立了双组份、多光源和多CCD的PSP测量系统,解决了大型暂冲式跨超声速风洞试验存在的模型表面温度变化、光照均匀性与强度变化,以及模型振动、试验数据修正、喷涂与压敏涂料校准等诸多影响PSP测量结果精准度与可靠性的问题,并成功应用于大飞机测压模型和三角翼测压模型压力分布测量试验。试验结果表明:在小迎角范围压敏漆涂层对模型表面压力分布影响不明显;在试验马赫数0.4~0.82、模型迎角-4°~4°范围,PSP与传统电子扫描阀测量结果的Cp 均方根偏差小于0.03,测量精准度与国外同量级连续式跨声速风洞相当。可以为飞行器气动优化设计和空气动力学研究提供一种新的、先进的测试技术。 相似文献
90.
针对三维内转式进气道V字形唇口下游面临的严酷压力载荷问题,将唇口简化为V字形钝化前缘平板,在来流马赫数为6的条件下,采用数值模拟结合激波风洞压敏涂料测量方法,研究了半径比R/r = 0 ~ 20(V字形根部倒圆半径R与前缘钝化半径r之比)的平板表面压力演化特性。结果表明,随着R/r增大,V字形钝化前缘产生的三维波系结构发生变化,引起下游平板表面压力演变出4种类型。R/r较小时,V字形钝化前缘激波干扰产生的大范围流动分离,诱导形成了偏离中心线较远的分叉状高压区(Type Ⅰ,分叉型);随着R/r增大,流动分离减弱,分叉状高压区逐渐消失,由透射激波扫掠壁面所形成的条带状高压和超声速射流对撞所形成的中心线高压区逐渐显露,依次出现过渡型(Type Ⅱ)、严酷型(Type Ⅲ)和渐匀型(Type Ⅳ)压力分布。平板上分叉型和过渡型的压力最大值仅为4.3 ~ 7.2p∞(p∞为来流静压),但V字形钝化前缘处的流场品质恶劣;严酷型的压力最大值,随着射流对撞强度的增强而增大,最高可达19p∞;渐匀型的压力最大值,随着射流对撞强度的减弱,逐渐趋近于二维钝前缘平板产生的压力最大值4p∞。 相似文献