首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1850篇
  免费   715篇
  国内免费   250篇
航空   2009篇
航天技术   166篇
综合类   315篇
航天   325篇
  2024年   27篇
  2023年   98篇
  2022年   140篇
  2021年   148篇
  2020年   141篇
  2019年   114篇
  2018年   117篇
  2017年   114篇
  2016年   123篇
  2015年   106篇
  2014年   127篇
  2013年   89篇
  2012年   98篇
  2011年   139篇
  2010年   120篇
  2009年   119篇
  2008年   118篇
  2007年   116篇
  2006年   66篇
  2005年   58篇
  2004年   49篇
  2003年   68篇
  2002年   45篇
  2001年   59篇
  2000年   42篇
  1999年   52篇
  1998年   48篇
  1997年   31篇
  1996年   42篇
  1995年   27篇
  1994年   30篇
  1993年   22篇
  1992年   28篇
  1991年   21篇
  1990年   20篇
  1989年   20篇
  1988年   10篇
  1987年   5篇
  1986年   8篇
  1985年   5篇
  1984年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
排序方式: 共有2815条查询结果,搜索用时 328 毫秒
131.
固冲发动机转级时进气道出口堵盖通常采用火工品爆炸方式打开,会对固冲发动机产生很大的瞬时冲击作用,进而影响弹体飞行姿态和弹上仪器的正常工作.借助Autodyn软件的显式动力学方法,对进气道出口堵盖打开时爆炸冲击响应进行了数值仿真分析,获得了固冲发动机不同位置的冲击加速度时域曲线和冲击响应谱曲线,并与试验结果进行了对比分析...  相似文献   
132.
包带低冲击装置冲击试验及数据分析   总被引:3,自引:0,他引:3  
文章主要阐述了包带低冲击装置冲击试验的过程及采用的试验技术,并对试验数据进行了处理和分析。通过大量的试验数据,对响应量级与测量点的位置分布、响应与包带预紧力的关系、冲击响应与装药量的关系、冲击响应与起爆器的关系、冲击响应的频率分布关系以及安装方式对试验结果产生的影响作了充分的分析。结果可为研究低冲击装置提供有价值的参考。  相似文献   
133.
为确保环管型燃烧室火焰筒流量分布的均匀性,要求单台火焰筒流量相对偏差δ位于±1.5%之内。采用模拟压比法与相似理论,建立了火焰筒空气流量特性对比试验的数学模型,并对数据处理模型的误差传递进行分析,得出现有模型存在一个不能对火焰筒真实特性进行判定的区间,火焰筒入口空气压力偏差Δp_1是引起δ误差的关键因素。为此,设计了一种基于两级扩散、整流集气装置的空气流量试验系统,并对一组16台火焰筒试验件进行了入口压力p_1为20 kPa,40 kPa,60 kPa及80 kPa下的空气流量试验研究。数据显示火焰筒入口压力偏差小于±0.05 kPa,入口压力脉动相对值小于0.25%,产品特性参数C值的相对误差不大于±0.01%,可以实现对火焰筒流量特性一致性的判定。  相似文献   
134.
针对航天器保护材料遭受碎石冲击的问题,提出采用对复合板进行加筋处理的方式提高复合材料层合板抗弹体高速冲击能力的方法。该方法利用ABAQUS建立有限元模型,对加筋板底层层合板内部引用cohesive模拟出层间分层,将弹体设置为离散型刚体。模拟弹体对加筋板的垂直高速冲击。通过分析弹体冲出板体的剩余速度研究复合材料加筋板的防弹效果。结果发现当弹体冲击点位于加筋条上时能很好地降低弹体的冲击速度。并发现较小的筋条间距、较大的筋条厚度可以有效增加复合材料加筋板的抗冲击能力,而筋条间隔不同对复合材料加筋板的抗冲击能力的影响可以忽略不计,本文为后续航天器抗弹体高速冲击能力研究提供了支撑。  相似文献   
135.
唐军  宋文艳  肖隐利 《推进技术》2018,39(8):1810-1820
为加深对航空发动机燃烧室中湍流燃烧过程的理解,采用不同建表方法的火焰面模型对航空发动机模型燃烧室内的湍流燃烧过程进行数值模拟,包括层流火焰面数据库的构建和反应进度变量的PDF类型两个方面。其中,层流火焰面数据库的构造方法包括基于扩散火焰的FPV和基于预混火焰的FGM模型,反应进度变量的PDF类型包括δ和β分布。LISA和KHRT模型分别用于模拟液膜和液滴的破碎过程,非平衡Langmuir-Knudsen模型用于模拟液滴的蒸发过程。LISA模型得到的液膜破碎距离约为4.6mm,液滴直径在文氏管出口下游迅速减小到10μm左右,并在头部出口下游附近完全蒸发。通过与相干反斯托克斯喇曼散射(CARS)和可调谐二极管激光吸收光谱(TDLAS)测量温度的对比,验证了FPV和FGM模型的精度,并表明在流动变化较大的位置FPV模型具有更高的精度,而其他位置FGM模型具有更高的精度,采用β分布作为反应进度变量PDF的模型,可以有效提高温度的预测进度,而且主燃区内的误差基本都在5%以内。此外采用β分布作为反应进度变量PDF的FGM模型,可以更好地描述未燃混合物被回流燃气点火的过程,而且反应进度变量的PDF类型比层流火焰面数据库构建方法的影响更为显著。  相似文献   
136.
为了探究合成双射流激励器及出口射流参数对圆柱绕流流动分离的控制效果,首次对合成双射流控制水下圆柱绕流流动分离进行了数值模拟。数值计算结果显示:保持激励器出口射流振幅不变的条件下,出口射流频率等于尾迹涡脱落特征频率时,射流控制作用与绕流流场耦合效果最好,控制流动分离效果最佳;保持出口射流频率为尾迹涡脱落特征频率时,在数值计算测试范围内,随着射流振幅的增大,射流对于流场的动量掺混能力增强,控制效果也随之增强。机理分析表明:合成射流位于前驻点的控制,主要通过在圆柱前缘形成虚拟气动外型来达到减阻控制的效果;而合成射流位于后驻点的控制,主要是通过增强回流区的动量掺混来提高回流区抑制分离的能力,从而达到减阻控制的效果。  相似文献   
137.
李姝  李君  卢占斌 《推进技术》2022,43(8):304-312
为解释毫米尺度多孔介质燃烧器中火焰可在一个当量比范围内驻定的物理现象,搭建了二维非稳态数学物理模型,利用数值计算方法定性研究了氢气/空气预混气在部分填充不锈钢网的微通道内的火焰传播特性。通过分析浸没火焰及表面火焰的温度分布特点并量化燃烧室内的预热和散热发现:火焰驻定在多孔介质内的不同位置时对应的传热特性存在差异,是控制火焰传播速度在一定当量比范围内保持恒定的关键因素,而预热及散热的相对大小可作为衡量传热对火焰宏观影响的重要参数。对火焰的的总预热与总散热之比R越临近多孔介质入口边界变化越剧烈,导致浸没火焰易驻定在多孔介质的中上游区域;多孔介质对火焰的预热虽在多孔介质出口边界外减小,但与多孔介质散热之比Rp呈上升趋势,使得低流速工况下易形成表面火焰。同时,R随当量比的变化规律导致多孔介质下游火焰的稳定性相对较弱。  相似文献   
138.
曹勇  张超 《航空学报》2022,(6):154-170
采用展宽减薄丝束的薄层复合材料具有显著的就位效应,导致其变形和失效机制更为复杂,并显现出不同于常规的损伤失效规律,引起了科研工作者的广泛关注。本文从薄层复合材料冲击损伤角度回顾了自薄层复合材料工业化应用以来,各类薄层复合材料冲击失效模式、层间断裂韧性和计算分析方法的研究现状,总结分析了降低单层厚度对复合材料冲击损伤行为的影响规律以及薄层复合材料冲击仿真分析的建模要点,展望了薄层复合材料冲击损伤研究待解决的关键科学问题和未来的研究要点。  相似文献   
139.
为研究典型航空座椅/乘员系统的水平冲击特性和载荷传递规律,基于结构水平冲击实验台系统,综合考量脉冲波形、假人响应和座椅响应,模拟座椅/乘员系统水平动态冲击过程,测试和分析假人运动过程和运动轨迹、假人内部加速度和载荷响应、座椅结构典型部位加速度和典型部位应变等,并基于实验结果研究座椅/乘员系统动态冲击响应的变化规律。结果表明:假人头部运动显著,假人内部响应变化趋势与加速度脉冲波形相近,且假人骨盆加速度和腰椎载荷最大,受损概率最大;座椅和假人均具有两条载荷传递路径,载荷主要经过座椅后椅腿和假人腰椎部位;座椅结构整体处于弹性变形阶段,典型加速度的变化趋势与加速度脉冲波形相近,后椅腿及其与后椅管和扶手架连接处受载显著应变最大;座椅内部加速度和应变与对应标记点的Z向距离密切相关。  相似文献   
140.
采用有限元分析与冲击试验相结合的方式对膨胀管与波纹管的吸能特性进行探究:通过数值仿真分析对吸能元件的试验过程进行初步掌握,同时根据冲击试验结果对试验设计的不合理之处进行修正;然后开展两种吸能元件的动态冲击试验,探究其吸能特性,最终比较分析有限元仿真分析与落锤冲击试验的试验结果,选择效果理想的吸能元件应用到襟翼交联机构上。结果表明:无论是从吸能行程、吸能稳定性还是吸能结构的设计考虑,波纹管都是最适合应用到交联机构中的吸能元件,该吸能元件比吸能大,吸能过程平缓稳定,吸收能量之后只有塑性形变但结构不发生破坏,同时吸能行程短,吸能结构简单,便于安装拆卸。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号