首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6889篇
  免费   1197篇
  国内免费   1693篇
航空   5171篇
航天技术   1580篇
综合类   889篇
航天   2139篇
  2024年   32篇
  2023年   110篇
  2022年   221篇
  2021年   298篇
  2020年   302篇
  2019年   348篇
  2018年   376篇
  2017年   379篇
  2016年   401篇
  2015年   388篇
  2014年   547篇
  2013年   446篇
  2012年   524篇
  2011年   528篇
  2010年   455篇
  2009年   464篇
  2008年   408篇
  2007年   407篇
  2006年   379篇
  2005年   305篇
  2004年   251篇
  2003年   256篇
  2002年   215篇
  2001年   192篇
  2000年   169篇
  1999年   136篇
  1998年   148篇
  1997年   137篇
  1996年   124篇
  1995年   118篇
  1994年   142篇
  1993年   102篇
  1992年   95篇
  1991年   106篇
  1990年   88篇
  1989年   75篇
  1988年   62篇
  1987年   20篇
  1986年   9篇
  1985年   16篇
排序方式: 共有9779条查询结果,搜索用时 15 毫秒
131.
贡献排序法的量化考评指标不能分解得太简单,也不能过繁、过细.思想政治表现得分可以运用模糊数学原理进行评价,实行定性向定量的转化.教学业绩考核内容要考虑教学工作量、教学效果等4个方面.科研业绩考核内容要考虑学术论文得分、著作得分等11个方面.荣誉称号可以按7个层次计分.其他项目计分要考虑学历、学位、留学、国内进修4项内容.  相似文献   
132.
对求解偏微分方程问题的程序的严格验证,一直以来由于其精确解有限,较难进行,针对这种情况,本文给出了一种新的程序验证方法,虚构解方法,该方法旨在解决大型科学计算程序如何较严格地进行程序验证这一问题;该方法通过构造虚构解,修改原控制方程,然后通过对计算结果的分析处理达到对程序的精确验证;文中给出了一组通用的虚构解的选取办法,解决了虚构解方法验证过程中确定虚构解的问题;同时还给出了运用该方法对非结构二维Euler计算程序进行验证的具体例子,网格收敛分析结果表明该方法是一种有效的程序验证方法,并且具有较好的通用性。  相似文献   
133.
本文通过引进决策方案的可行度和决策者参考目标水平的满足度等概念,提出了一种不确定条件下的多目标随机决策方法——交互式参考目标满足度与可行度决策分析中,取得了较好的效果。  相似文献   
134.
再入弹抛壳气动特性研究   总被引:1,自引:0,他引:1  
本文用有限差分方法求解再入母弹头与其所抛壳体之间的无粘干扰流场,获得了体—壳的干扰气动力,并在准定常假设的基础上近似模拟了弹体与壳体的分离过程。数值研究的结果表明,体—壳间存在的干扰会导致壳的压心位置急剧变化,危及母弹安全;抛壳速度是体—壳安全分离的关键参数。  相似文献   
135.
曾颖超 《航空学报》1990,11(9):417-423
 为分析活动目标的随机飞行状态和减小导弹的脱靶量,提出了数学模拟打靶的一种新方法。其中包括卡尔曼滤波理论结合最大似然法的应用,以及建立相对运动的离散化模型和灵敏度矩阵。为改善飞行状态的估计精度,论述了确立飞行弹道修正协方差矩阵的概念。除此之外,还讨论了导引敏感器静态误差影响脱靶量的估计问题。  相似文献   
136.
The magnetospheric imaging instrument (MIMI) is a neutral and charged particle detection system on the Cassini orbiter spacecraft designed to perform both global imaging and in-situ measurements to study the overall configuration and dynamics of Saturn’s magnetosphere and its interactions with the solar wind, Saturn’s atmosphere, Titan, and the icy satellites. The processes responsible for Saturn’s aurora will be investigated; a search will be performed for substorms at Saturn; and the origins of magnetospheric hot plasmas will be determined. Further, the Jovian magnetosphere and Io torus will be imaged during Jupiter flyby. The investigative approach is twofold. (1) Perform remote sensing of the magnetospheric energetic (E > 7 keV) ion plasmas by detecting and imaging charge-exchange neutrals, created when magnetospheric ions capture electrons from ambient neutral gas. Such escaping neutrals were detected by the Voyager l spacecraft outside Saturn’s magnetosphere and can be used like photons to form images of the emitting regions, as has been demonstrated at Earth. (2) Determine through in-situ measurements the 3-D particle distribution functions including ion composition and charge states (E > 3 keV/e). The combination of in-situ measurements with global images, together with analysis and interpretation techniques that include direct “forward modeling’’ and deconvolution by tomography, is expected to yield a global assessment of magnetospheric structure and dynamics, including (a) magnetospheric ring currents and hot plasma populations, (b) magnetic field distortions, (c) electric field configuration, (d) particle injection boundaries associated with magnetic storms and substorms, and (e) the connection of the magnetosphere to ionospheric altitudes. Titan and its torus will stand out in energetic neutral images throughout the Cassini orbit, and thus serve as a continuous remote probe of ion flux variations near 20R S (e.g., magnetopause crossings and substorm plasma injections). The Titan exosphere and its cometary interaction with magnetospheric plasmas will be imaged in detail on each flyby. The three principal sensors of MIMI consists of an ion and neutral camera (INCA), a charge–energy–mass-spectrometer (CHEMS) essentially identical to our instrument flown on the ISTP/Geotail spacecraft, and the low energy magnetospheric measurements system (LEMMS), an advanced design of one of our sensors flown on the Galileo spacecraft. The INCA head is a large geometry factor (G ∼ 2.4 cm2 sr) foil time-of-flight (TOF) camera that separately registers the incident direction of either energetic neutral atoms (ENA) or ion species (≥5 full width half maximum) over the range 7 keV/nuc < E < 3 MeV/nuc. CHEMS uses electrostatic deflection, TOF, and energy measurement to determine ion energy, charge state, mass, and 3-D anisotropy in the range 3 ≤ E ≤ 220 keV/e with good (∼0.05 cm2 sr) sensitivity. LEMMS is a two-ended telescope that measures ions in the range 0.03 ≤ E ≤ 18 MeV and electrons 0.015 ≤ E≤ 0.884 MeV in the forward direction (G ∼ 0.02 cm2 sr), while high energy electrons (0.1–5 MeV) and ions (1.6–160 MeV) are measured from the back direction (G ∼ 0.4 cm2 sr). The latter are relevant to inner magnetosphere studies of diffusion processes and satellite microsignatures as well as cosmic ray albedo neutron decay (CRAND). Our analyses of Voyager energetic neutral particle and Lyman-α measurements show that INCA will provide statistically significant global magnetospheric images from a distance of ∼60 R S every 2–3 h (every ∼10 min from ∼20 R S). Moreover, during Titan flybys, INCA will provide images of the interaction of the Titan exosphere with the Saturn magnetosphere every 1.5 min. Time resolution for charged particle measurements can be < 0.1 s, which is more than adequate for microsignature studies. Data obtained during Venus-2 flyby and Earth swingby in June and August 1999, respectively, and Jupiter flyby in December 2000 to January 2001 show that the instrument is performing well, has made important and heretofore unobtainable measurements in interplanetary space at Jupiter, and will likely obtain high-quality data throughout each orbit of the Cassini mission at Saturn. Sample data from each of the three sensors during the August 18 Earth swingby are shown, including the first ENA image of part of the ring current obtained by an instrument specifically designed for this purpose. Similarily, measurements in cis-Jovian space include the first detailed charge state determination of Iogenic ions and several ENA images of that planet’s magnetosphere.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
137.
可拓优度评价方法在创新项目选择中的应用   总被引:1,自引:0,他引:1  
创新项目选择是否得当,直接关系着企业的生存和发展。针对创新项目选择的可行性问题,文章将可拓工程中的优度评价方法应用于创新项目的选择过程之中,运用定性与定量相结合的方法,对项目方案进行评价,为决策提供可靠依据。  相似文献   
138.
子母弹分离过程的数值模拟方法   总被引:5,自引:1,他引:5  
以分区拼接网格数值模拟方法为基础,通过气动方程和弹道方程联立求解数值模拟了子弹从母弹中分离并穿越母弹激波的过程,研究了子母弹干扰流场的气动特性,分析研究了子弹各初始分离状态(如初始抛撒速度、初始姿态角、初始姿态角速度等)对分离过程的影响。  相似文献   
139.
杨文将  刘宇 《飞行力学》2006,24(2):47-50
针对磁悬浮助推水平起飞运载器这种新型发射概念,采用概念性分析方法,研究地面发射参数对可重复使用运载器性能的影响规律。结果表明,助推发射水平起飞运载器在降低初始推重比、推进剂和结构质量等方面具有优势,最后得出地面发射参数的一组优化值。  相似文献   
140.
In 1998, Comet 9P/Tempel 1 was chosen as the target of the Deep Impact mission (A’Hearn, M. F., Belton, M. J. S., and Delamere, A., Space Sci. Rev., 2005) even though very little was known about its physical properties. Efforts were immediately begun to improve this situation by the Deep Impact Science Team leading to the founding of a worldwide observing campaign (Meech et al., Space Sci. Rev., 2005a). This campaign has already produced a great deal of information on the global properties of the comet’s nucleus (summarized in Table I) that is vital to the planning and the assessment of the chances of success at the impact and encounter. Since the mission was begun the successful encounters of the Deep Space 1 spacecraft at Comet 19P/Borrelly and the Stardust spacecraft at Comet 81P/Wild 2 have occurred yielding new information on the state of the nuclei of these two comets. This information, together with earlier results on the nucleus of comet 1P/Halley from the European Space Agency’s Giotto, the Soviet Vega mission, and various ground-based observational and theoretical studies, is used as a basis for conjectures on the morphological, geological, mechanical, and compositional properties of the surface and subsurface that Deep Impact may find at 9P/Tempel 1. We adopt the following working values (circa December 2004) for the nucleus parameters of prime importance to Deep Impact as follows: mean effective radius = 3.25± 0.2 km, shape – irregular triaxial ellipsoid with a/b = 3.2± 0.4 and overall dimensions of ∼14.4 × 4.4 × 4.4 km, principal axis rotation with period = 41.85± 0.1 hr, pole directions (RA, Dec, J2000) = 46± 10, 73± 10 deg (Pole 1) or 287± 14, 16.5± 10 deg (Pole 2) (the two poles are photometrically, but not geometrically, equivalent), Kron-Cousins (V-R) color = 0.56± 0.02, V-band geometric albedo = 0.04± 0.01, R-band geometric albedo = 0.05± 0.01, R-band H(1,1,0) = 14.441± 0.067, and mass ∼7×1013 kg assuming a bulk density of 500 kg m−3. As these are working values, {i.e.}, based on preliminary analyses, it is expected that adjustments to their values may be made before encounter as improved estimates become available through further analysis of the large database being made available by the Deep Impact observing campaign. Given the parameters listed above the impact will occur in an environment where the local gravity is estimated at 0.027–0.04 cm s−2 and the escape velocity between 1.4 and 2 m s−1. For both of the rotation poles found here, the Deep Impact spacecraft on approach to encounter will find the rotation axis close to the plane of the sky (aspect angles 82.2 and 69.7 deg. for pole 1 and 2, respectively). However, until the rotation period estimate is substantially improved, it will remain uncertain whether the impactor will collide with the broadside or the ends of the nucleus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号