首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7366篇
  免费   1237篇
  国内免费   1908篇
航空   5541篇
航天技术   1771篇
综合类   1005篇
航天   2194篇
  2024年   33篇
  2023年   149篇
  2022年   242篇
  2021年   350篇
  2020年   348篇
  2019年   411篇
  2018年   414篇
  2017年   362篇
  2016年   415篇
  2015年   383篇
  2014年   484篇
  2013年   365篇
  2012年   490篇
  2011年   597篇
  2010年   435篇
  2009年   438篇
  2008年   454篇
  2007年   456篇
  2006年   424篇
  2005年   397篇
  2004年   348篇
  2003年   326篇
  2002年   253篇
  2001年   221篇
  2000年   225篇
  1999年   241篇
  1998年   195篇
  1997年   184篇
  1996年   117篇
  1995年   110篇
  1994年   129篇
  1993年   103篇
  1992年   73篇
  1991年   85篇
  1990年   90篇
  1989年   73篇
  1988年   52篇
  1987年   21篇
  1986年   16篇
  1985年   2篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
571.
Avionics full duplex switched ethernet(AFDX) is a switched interconnection technology developed to provide reliable data exchange with strong data transmission time guarantees in internal communication of the spacecraft or aircraft.Virtual link(VL) is an important concept of AFDX to meet quality of service(QoS) requirements in terms of end-to-end message deadlines.A VL admission control algorithm in AFDX network under hard real-time(HRT) constraints is studied.Based on the scheduling prin-ciple of AFDX prot...  相似文献   
572.
刘泽远  邓智泉  王世山  曹鑫  杨钢  王晓琳 《航空学报》2009,30(12):2401-2410
分析了无轴承开关磁阻电机(BSRM)的3种负载控制策略(方波控制策略、最小磁势控制策略和平均悬浮力控制策略),以及每种策略下由悬浮力方程和转矩方程求解超前角和绕组电流的方法。由于控制对象和求解过程所引入约束条件的不同,即便相同负载状况时,3种控制策略求取的超前角和绕组电流结果也不同。利用瞬态有限元法获得了电机的动态磁密分布,并研究了3种控制策略下电机分别表现出的磁场特性。通过双频法分离铁损,分别计算了3种控制策略在不同转速时的电机涡流损耗和磁滞损耗,给出了电机铁心各部分损耗随转速变化的关系,由此得到了3种控制策略对铁心损耗的影响。  相似文献   
573.
由于静电场的负刚度导致控制回路系统的不稳定,因此静电力闭环硅微加速度计控制系统设计是硅微加速度计技术的关键核心技术,也是硅微加速度计设计的难点技术之一。在硅微加速度计项目研制过程中,我们解决了仪表回路系统的稳定性问题、高增益和带宽的问题,保证了仪表启动的快速性、精度和稳定性。  相似文献   
574.
文章首先对比说明数字再平衡回路所具有的特点,论述了模拟系统数字化的理论与方法,建立了数字再平衡回路的数学模型,并对典型动态环节的软件算法进行了介绍,接着为改善系统的动态响应特性引入了数字PID控制算法。最后对试验样机的硬件组成、软件流程,以及在转台试验中的结果进行了总结。  相似文献   
575.
576.
《中国航空学报》2021,34(4):1-18
The previous studies of time delay compensation in flight control systems are all based on the conventional aerodynamic derivative model and conducted in longitudinal motions at low angles of attack. In this investigation, the effects of time delay on the lateral-directional stability augmentation system in high-α regime are discussed based on the β̇ model, which is proposed in our previous work and proved as a more accurate aerodynamic model to reveal the lateral-directional unsteady aerodynamic characteristics at high angles of attack. Both the β̇ model and the quasi-steady model are used for simulating the effects of time delay on the flying qualities in high-α maneuvers. The comparison between the simulation results shows that the flying qualities are much more sensitive to the mismatch of feedback gains than the state errors caused by time delay. Then a typical adaptive controller based on the conventional dynamic derivative model and a gain-prediction compensator based on β̇ model are designed to address the time delay in different maneuvers. The simulation results show that the gain-prediction compensator is much simpler and more efficient at high angles of attack. Finally, the gain-prediction compensator is combined with a linearized β̇ model reference adaptive controller to compensate the adverse effects of very large time delay, which exhibits excellent performance when addressing the extreme conditions at high angles of attack.  相似文献   
577.
《中国航空学报》2021,34(4):293-305
This paper addresses the challenge of synchronized multiple spacecraft attitude reorientation in presence of pointing and boundary constraints with limited inter-spacecraft communication link. Relative attitude pointing constraint among the fleet of spacecraft has also been modeled and considered during the attitude maneuvers toward the desired states. Formation fling control structure that consists of decentralized path planners based on virtual structure approach joint with discrete time optimal local controller is designed to achieve the mission’s goals. Due to digital computing of spacecraft’s onboard computer, local optimal controller based on discrete time prediction and correction algorithm has been utilized. The time step of local optimal algorithm execution is designed so that the spacecraft track their desired attitudes with appropriate error bound. The convergence of the proposed architecture and stability of local controller’s tracking error within appropriate upper bound are proved. Finally, a numerical simulation of a stereo imaging scenario is presented to verify the performance of the proposed architecture and the effectiveness of the algorithm.  相似文献   
578.
Forward Variable Area Bypass Injector (FVABI) is one of key components which contributes to modulate the cycle parameters of Variable Cycle Engine (VCE) under various operation conditions. The modeling method of zero-dimensional FVABI was reviewed and its deficiency was analyzed based on FVABI flow characteristic. In order to improve the accuracy of VCE performance simulation, the high-fidelity modeling method of FVABI was developed based on its working characteristics. Then it was coupled with the zero-dimensional VCE model and the multi-level VCE model was built. The results indicate that the geometric and aerodynamic parameters can affect the interaction between the two airflows and the zero-dimensional FVABI model is too simple to predict the component performance accurately, especially when the FVABI inner bypass is chocked. Based on the performance curves for single bypass mode and the regression model of multi-scale support vector regression for double bypass mode, the high-fidelity model can predict FVABI performance accurately and rapidly. The integration of high-fidelity FVABI model into zero-dimensional VCE model can be done by adjusting iterative variables and balance equations. The multi-level model has good convergence and it can predict VCE performance when the FVABI inner bypass is chocked.  相似文献   
579.
This paper presents a review of the various methods for the stationary non-Gaussian random vibration control. Random vibration tests can be divided, according to the number of exciters, in single-shaker tests and multiple-shaker tests. In the stationary non-Gaussian random vibration test, the time and frequency domain characteristics of the responses should be controlled independently and simultaneously. Skewness and kurtosis are usually selected as the non-Gaussian time control references (targets) while power spectral density is the frequency domain control procedure before it recalls the concepts of non-Gaussianity. Then, the generation of a one frame stationary non-Gaussian random signal for both the single and multiple shakers are reviewed. The commonly used methods for the single non-Gaussian random signal generation in the random vibration test are memoryless nonlinear transformation, phase modification and Filtered Poisson process. For the multiple-shaker case, the sequential phase modification and memoryless nonlinear transformation are used to generate one frame coupled multi-channel non-Gaussian random signal. In order to obtain a stationary and consecutive dynamic input, the time domain randomization procedure is introduced with high computational efficiency and its influences on the skewness and kurtosis are analyzed. Finally, two existing problems in the non-Gaussian random vibration control are addressed.  相似文献   
580.
《中国航空学报》2021,34(5):642-651
A novel accurate tracking controller is developed for the longitudinal dynamics of Hypersonic Flight Vehicles (HFVs) in the presence of large model uncertainties, external disturbances and actuator nonlinearities. Distinct from the state-of-the-art, besides being continuity, no restrictive conditions have been imposed on the HFVs dynamics. The system uncertainties are skillfully handled by being seen as bounded “disturbance terms”. In addition, by means of back-stepping adaptive technique, the accurate tracking (i.e. tracking errors converge to zero as time approaches infinity) rather than bounded tracking (i.e. tracking errors converge to residual sets) has been achieved. What’s more, the accurate tracking problems for HFVs subject to actuator dead-zone and hysteresis are discussed, respectively. Then, all signals of closed-loop system are verified to be Semi-Global Uniformly Ultimate Boundness (SGUUB). Finally, the efficacy and superiority of the developed control strategy are confirmed by simulation results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号