首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   540篇
  免费   133篇
  国内免费   156篇
航空   574篇
航天技术   81篇
综合类   70篇
航天   104篇
  2024年   3篇
  2023年   10篇
  2022年   29篇
  2021年   28篇
  2020年   31篇
  2019年   30篇
  2018年   26篇
  2017年   32篇
  2016年   46篇
  2015年   46篇
  2014年   61篇
  2013年   33篇
  2012年   50篇
  2011年   39篇
  2010年   36篇
  2009年   39篇
  2008年   38篇
  2007年   19篇
  2006年   28篇
  2005年   21篇
  2004年   14篇
  2003年   19篇
  2002年   16篇
  2001年   8篇
  2000年   7篇
  1999年   7篇
  1998年   10篇
  1997年   12篇
  1996年   11篇
  1995年   4篇
  1994年   10篇
  1993年   19篇
  1992年   11篇
  1991年   15篇
  1990年   9篇
  1989年   8篇
  1988年   4篇
排序方式: 共有829条查询结果,搜索用时 15 毫秒
361.
复合固体推进剂的相(微相)分离   总被引:4,自引:0,他引:4  
复合固体推进剂中存在两种形式的相分离,一种是由于粘合剂体系的混溶性差或是由于粘中合剂和增塑剂的结晶及凝胶作用造成的;另一种为聚氨酯粘合剂基体中软硬段的微相分离,两种相分离可以同时发生,但其对复合固体推进剂性能的影响不同,粘合剂与增塑剂的相分离有可能导臻推进剂性能的严重下降,而适宜的微相分离则能显著提高推进剂的力学性能,可以采用微相分离促进剂、离子化和形成互穿聚合物网络的方法来改善推进剂的微相分离,提高其务学性能。  相似文献   
362.
空间飞行器的对接分离与地面模拟试验的仿真分析研究   总被引:2,自引:0,他引:2  
张华  肖余之  徐博侯  陶伟明 《宇航学报》2008,29(6):1761-1765
对两对接飞行器的分离过程和地面模拟试验过程进行了理论分析,论述了两飞行器在分离瞬 间空间分离过程与地面模拟试验过程之间的对应比拟关系;依据地面试验中给出的多种工况 ,利用多体动力学软件ADAMS仿真分析并比对了地面和空间零重力两种环境条件下两飞行器 分离时的运动特性,讨论了地面五自由度对接分离气浮平台模拟两飞行器在空间实际分离时 带来的原理误差影响。  相似文献   
363.
Wall pressure fluctuations generated by Turbulent Boundary Layers(TBL) provide a significant contribution in reducing the structural vibration and the aircraft cabin noise. However,it is difficult to evaluate these fluctuations accurately through a wind tunnel test because of the pollution caused by the background noise generated by the jet or the valve of the wind tunnel. In this study, a new technology named Subsection Approaching Method(SAM) is proposed to separate the wall pressure fluctuations from the background noise induced by the jet or the valve for a transonic wind tunnel test. The SAM demonstrates good performance on separating the background noise from the total pressure compared to the other method in this study. The investigation considers the effects of the sound intensity and the decay factor on the sound-source separation. The results show that the SAM can derive wall pressure fluctuations effectively even when the level of background noise is considerably higher than the level of the wall pressure fluctuations caused by the TBL. In addition, the computational precision is also analyzed based on the broad band noise tested in the wind tunnel. Two methods to improve the precision of the computation with the SAM are also suggested: decreasing the loop gain and increasing the sensors for the signal analysis.  相似文献   
364.
微型涡流发生器控制超临界翼型边界层分离实验研究   总被引:2,自引:0,他引:2  
在低速风洞中研究了微型涡流发生器对超临界翼型边界层分离的控制。根据超临界翼型边界层分离特性,提出了涡流发生器的流动机理。研究了梯形涡流发生器不同高度和弦向位置对边界层分离控制效果的影响。研究表明,微型涡流发生器对超临界翼型边界层分离的控制主要起减阻作用;适宜采用微型涡流发生器对超临界翼型边界层分离进行控制,其最佳位置应在分离线前2~5日涡流发生器高度之间。  相似文献   
365.
喷管作为液体火箭发动机产生推力的重要组件之一,其内部存在的复杂流动现象对发动机性能具有重要影响,本文综述了该领域的相关研究进展。传统喷管在过膨胀状态下会产生自由激波和受限激波两种分离模式,其非定常、非对称性给发动机带来严重的侧向载荷,也造成流动预测较为困难。采用凹坑或涡轮废气主动射流等方式能够避免受限激波分离的出现,抑制侧向载荷,但却无法对喷管损失的性能进行有效补偿。通过对传统喷管的创新设计,高度补偿喷管不仅能够有效控制管内流动,还能在不同程度上提升发动机性能。然而,高度补偿喷管形式众多、各有所长,工程应用应谨慎决策。此外,各种形式的高度补偿喷管内仍旧存在激波/边界层干扰、分离、回流等不利的流动现象,亟待对其开展深入研究。  相似文献   
366.
本文介绍一种计算带分离的大中层弦比、小后掠角机翼低速气动特性的近似方法。根据给定机翼的平面形状和几何迎角,按线化升力面理论算出升力和力矩沿展向分布的第一次近似值。再逆向应用升力面理论估算下洗流场,从而近似地得到各个削面的有效迎角。然后根据有效迎角及雷诺数,从翼型实验数据得到相应的升力和力矩分布的第二次近似值。如此反复迭代直至收敛为止。  相似文献   
367.
近年来,膜分离技术在飞机燃油箱防火防爆中的应用在国外得到了迅速发展,它的应用有效地提高了军用飞机的生存力、利用率和可靠性。本文就膜分离在飞机燃油箱防火防爆中的应用技术作了介绍,随着该技术的不断完善和提高,它将是飞机燃油箱防火防爆工作不可或缺的技术之一。  相似文献   
368.
大迎角气动弹性分析是现代飞行器设计中非常引人瞩目并且复杂的研究课题.采用Navier-Stokes方程求解非定常流场,耦合结构运动方程,在状态空间内实现了70°削尖三角翼涡破裂前后的气动弹性时域模拟.研究显示,前缘分离涡破裂后,流动的非定常脉动特性非常明显,这种非定常效应对机翼气动弹性特性的影响不可忽略.涡破裂前,气动...  相似文献   
369.
针对可重复使用助推器(RBV)强非线性、强耦合、多输入/多输出的特点,在姿态变化剧烈及空域变化广的调姿转弯阶段,采用非线性动态逆控制方法设计RBV的姿态控制系统。根据时标分离原则及奇异摄动理论,将系统分为快慢两回路子系统。对所需的总控制力矩进行控制分配,由空气舵和反作用控制系统(RCS)共同执行。仿真结果表明:由该法可获得较好的动态性能和鲁棒性。  相似文献   
370.
基于变结构鲁棒控制的导弹再入解耦控制   总被引:1,自引:0,他引:1  
根据时标分离的原则,分成快慢两个回路采用动态逆对导弹大迎角再入系统进行了设计。针对快回路受到的参数不确定性和外来干扰引起的不确定性的影响,提出了采用变结构控制和鲁棒控制的方法,使系统受到的不确定影响衰减到一个给定的水平,并获得一个H∞跟踪性能指标。理论分析和仿真结果表明,采用这种方法系统具有良好的鲁棒性和跟踪特性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号