首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   361篇
  免费   10篇
  国内免费   49篇
航空   140篇
航天技术   235篇
综合类   25篇
航天   20篇
  2024年   1篇
  2023年   11篇
  2022年   4篇
  2021年   14篇
  2020年   13篇
  2019年   16篇
  2018年   19篇
  2017年   4篇
  2016年   5篇
  2015年   8篇
  2014年   17篇
  2013年   17篇
  2012年   21篇
  2011年   25篇
  2010年   15篇
  2009年   33篇
  2008年   28篇
  2007年   15篇
  2006年   16篇
  2005年   16篇
  2004年   3篇
  2003年   19篇
  2002年   7篇
  2001年   8篇
  2000年   6篇
  1999年   8篇
  1998年   10篇
  1997年   13篇
  1996年   11篇
  1995年   8篇
  1994年   12篇
  1993年   5篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1986年   2篇
  1984年   1篇
排序方式: 共有420条查询结果,搜索用时 15 毫秒
331.
A total solar eclipse occurred on 21 August 2017, with the path of totality starting over the North Pacific Ocean, crossing North-America and ending over the Mid-Atlantic Ocean slightly North of the equator. As a result, a partial solar eclipse was observed as far away as the Western Europe. The ionospheric observatory in Dourbes, Belgium, was right on the edge of the partial eclipse and was exposed for a very short period of only few minutes just before the local sunset. High-resolution ionospheric measurements were carried out at the observatory with collocated digital ionosonde and GNSS receivers. The data analysis revealed a clear wave-like pattern in the ionosphere that can be seen arriving before the local onset of the eclipse. The paper details the analysis and provides a possible explanation of the observed phenomenon.  相似文献   
332.
Herein, we report on the ionospheric responses to a total solar eclipse that occurred on 21 August 2017 over the US region. Ground-based GPS total electron content (TEC) data along with ground-based measurements (Millstone Hill Observatory (MHO) and digital ionosondes) and space-based measurements (COSMIC radio occultation (RO) technique) allowed us to identify eclipse-associated ionospheric responses. TEC data at ~20°, ~30°, and ~40°N latitudes from the west to east longitudes show not only considerable depression but also wave-like characteristics in TEC both in the path of totality and away from it, exclusively on the day of eclipse. Interestingly, the observed depressions are associated with lesser (higher) magnitudes at stations over which the solar obscuration percentage was meager (significant), a clear indication of bow-wave-like features. The MHO observes a 30% reduction in F2-layer electron densities between 180 and 220 km on eclipse day. Ionosonde-scaled parameters over Boulder (40.4°N, 100°E) and Austin (30.4°N, 94.4°E) show a significant decrease in critical frequencies while an altitude elevation is seen in the virtual heights of the F-layer only during the eclipse day and that decreases are associated with wave-like signatures, which could be attributed to eclipse-generated waves. The estimated vertical electron density profile from the COSMIC RO-based technique shows a maximum depletion of 40%. Relatively intense and moderate depths of TEC depression, considerable reductions in the F2-layer electron densities measured by the MHO and COSMIC RO-measured densities at the F2-layer peak, and elevations in virtual heights and reduction in the critical frequencies measured by ionosondes during the eclipse day could be due to the eclipse-induced dynamical effects such as gravity waves (GWs) and their associated electro-dynamical effects (modification of ionospheric electric fields due to GWs).  相似文献   
333.
The influence of quasi-static electric field of seismic origin on the characteristics of the internal gravity waves (IGWs) in the Earth’s ionosphere is considered. The electric field in the ionosphere arises due to the injection of charged aerosols into the atmosphere, formation of an EMF in the near Earth atmosphere and perturbation of the conductive electric current in the global electric circuit. Amplification of the electric current in seismic zone is accompanied by the formation of perturbation of the lower ionosphere that affects the amplitude and phase of VLF/LF signals. The action of the electric field on the IGWs is connected with the appearance of the Ampere’s force in the ionosphere. In the spectral range of these waves the latter acts on the neutral component of the ionosphere plasma. As the result of this interaction the ionosphere starts to support the discrete spectrum of oscillations. Periods of their maximums increase as numbers of natural sequence. The existence of such peculiarities of the waves in the ionosphere is confirmed by observations.  相似文献   
334.
为了降低超音速飞行时产生的波阻,通过斜激波基本公式建立了设计马赫数为2的布泽曼双翼翼型,借助CFD软件计算其升阻特性,并与菱形单翼翼型作对比,同时分析了在非设计条件下布泽曼双翼翼型的壅塞问题.结果表明,布泽曼双翼在设计马赫数下,其波阻较传统菱形单翼降低90%,壅塞问题也得到很好地解决.  相似文献   
335.
Reconnection is a major commonality of solar and magnetospheric physics. It was conjectured by Giovanelli in 1946 to explain particle acceleration in solar flares near magnetic neutral points. Since than it has been broadly applied in space physics including magnetospheric physics. In a special way this is due to Harry Petschek, who in 1994 published his ground breaking solution for a 2D magnetized plasma flow in regions containing singularities of vanishing magnetic field. Petschek’s reconnection theory was questioned in endless disputes and arguments, but his work stimulated the further investigation of this phenomenon like no other. However, there are questions left open. We consider two of them – “anomalous” resistivity in collisionless space plasma and the nature of reconnection in three dimensions. The CLUSTER and SOHO missions address these two aspects of reconnection in a complementary way -- the resistivity problem in situ in the magnetosphere and the 3D aspect by remote sensing of the Sun. We demonstrate that the search for answers to both questions leads beyond the applicability of analytical theories and that appropriate numerical approaches are necessary to investigate the essentially nonlinear and nonlocal processes involved. Necessary are both micro-physical, kinetic Vlasov-equation based methods of investigation as well as large scale (MHD) simulations to obtain the geometry and topology of the acting fields and flows.  相似文献   
336.
The possibility of remote diagnostics of coronal structures with impulsively-generated short-period fast magnetoacoustic wave trains is demonstrated. An initially broad-band, aperiodic fast magnetoacoustic perturbation guided by a 1D plasma inhomogeneity develops into a quasi-periodic wave train with a well-pronounced frequency and amplitude modulation. The quasi-periodicity results from the geometrical dispersion of the modes, determined by the transverse profile of the loop, and hence contains information about the profile. Wavelet images of the wave train demonstrate that their typical spectral signature is of a “crazy tadpole’’ shape: a narrow spectrum tail precedes a broad-band head. The instantaneous period of the oscillations in the wave train decreases gradually with time, with a mean value of several seconds for typical coronal values. The period and the spectral amplitude evolution are determined by the steepness of the transverse density profile and the density contrast ratio in the loop, which offers a tool for estimation of the sub-resolution structuring of the corona.  相似文献   
337.
A statistical analysis of low frequency geomagnetic fluctuations at the two Antarctic stations Mario Zucchelli Station (geographic coordinates: 74.7°S, 164.1°E; corrected geomagnetic coordinates: 80.0°S, 306.8°E) and Dumont D’Urville (geographic coordinates: 66.7°S, 140.0°E; corrected geomagnetic coordinates: 80.4°S, 236.0°E) is shown. The analysis focuses on power spectra, coherence and phase difference between the stations, which are both located in the polar cap, with a 5-h magnetic local time displacement along a geomagnetic parallel; in this situation, the phase difference between geomagnetic fluctuations indicates the direction of their azimuthal propagation. Coherent fluctuations have been found to occur preferably when both stations are on the same side (dawnward or duskward) with respect to the polar cusp; moreover, around local magnetic midnight, they occur essentially during open magnetospheric conditions. The phase difference for coherent fluctuations indicates a propagation direction away from local geomagnetic noon and midnight. Also the analysis of three individual pulsation events, occurring at different times during the day, is shown; they are characterized at the two stations by simultaneous, coherent fluctuations, whose phase difference finds correspondence with the statistical behaviour.  相似文献   
338.
We analyze the advantages of using ultra-cold coherent sources of atoms for matter-wave interferometry in space. We present a proof-of-principle experiment that is based on an analysis of the results previously published in Richard et al. (2003) from which we extract the ratio h/m for 87Rb. This measurement shows that a limitation in accuracy arises due to atomic interactions within the Bose–Einstein condensate. Finally we discuss the promising role of coherent-matter-wave sensors, in particular inertial sensors, in future fundamental physics missions in space.  相似文献   
339.
Foreshock and magnetosheath waves in Uranus and Neptune magnetospheres are studied in this work with wavelet analysis. In order to conduct this study, Voyager-2 magnetometer 3-s averaged data are used. The Morlet wavelet transform is applied to the magnetic field vector data. Waves present in the magnetosheath and foreshock regions are highly non-stationary, showing large amplitude variations. It was found that the dominant periods of these waves are longer than the H+ cyclotron period. Overall, high frequency waves are seen near the bow shock crossing and low frequency oscillations near the magnetopause crossing. It can be concluded that non-stationary foreshock and magnetosheath planetary waves can be well characterized with wavelet analysis.  相似文献   
340.
张森林 《航空学报》1992,13(9):510-515
着重分析在核爆炸冲击波环境中飞机结构动力响应有关问题,推导了动力学基本方程,介绍了飞机在核爆炸冲击波中非定常气动载荷计算方法,给出了结构动力响应分析的思路和计算过程,提出了飞行飞机在核爆炸冲击波作用下总体结构安全边界值的估算方法,并对存在的问题进行了讨论。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号