全文获取类型
收费全文 | 342篇 |
免费 | 81篇 |
国内免费 | 39篇 |
专业分类
航空 | 148篇 |
航天技术 | 259篇 |
综合类 | 32篇 |
航天 | 23篇 |
出版年
2025年 | 2篇 |
2024年 | 13篇 |
2023年 | 12篇 |
2022年 | 8篇 |
2021年 | 17篇 |
2020年 | 15篇 |
2019年 | 18篇 |
2018年 | 24篇 |
2017年 | 9篇 |
2016年 | 6篇 |
2015年 | 8篇 |
2014年 | 19篇 |
2013年 | 20篇 |
2012年 | 21篇 |
2011年 | 25篇 |
2010年 | 15篇 |
2009年 | 33篇 |
2008年 | 28篇 |
2007年 | 15篇 |
2006年 | 16篇 |
2005年 | 16篇 |
2004年 | 3篇 |
2003年 | 19篇 |
2002年 | 7篇 |
2001年 | 8篇 |
2000年 | 6篇 |
1999年 | 8篇 |
1998年 | 10篇 |
1997年 | 13篇 |
1996年 | 11篇 |
1995年 | 8篇 |
1994年 | 12篇 |
1993年 | 5篇 |
1992年 | 3篇 |
1991年 | 2篇 |
1990年 | 2篇 |
1989年 | 1篇 |
1988年 | 1篇 |
1986年 | 2篇 |
1984年 | 1篇 |
排序方式: 共有462条查询结果,搜索用时 15 毫秒
281.
The properties of magnetohydrodynamic waves and instabilities of laboratory and space plasmas are determined by the overall
magnetic confinement geometry and by the detailed distributions of the density, pressure, magnetic field, and background velocity
of the plasma. Consequently, measurement of the spectrum of MHD waves (MHD spectroscopy) gives direct information on the internal
state of the plasma, provided a theoretical model is available to solve the forward as well as the inverse spectral problems.
This terminology entails a program, viz. to improve the accuracy of our knowledge of plasmas, both in the laboratory and in
space. Here, helioseismology (which could be considered as one of the forms of MHD spectroscopy) may serve as a luminous example.
The required study of magnetohydrodynamic waves and instabilities of both laboratory and space plasmas has been conducted
for many years starting from the assumption of static equilibrium. Recently, there is a outburst of interest for plasma states
where this assumption is violated. In fusion research, this interest is due to the importance of neutral beam heating and
pumped divertor action for the extraction of heat and exhaust needed in future tokamak reactors. Both result in rotation of
the plasma with speeds that do not permit the assumption of static equilibrium anymore. In astrophysics, observations in the
full range of electromagnetic radiation has revealed the primary importance of plasma flows in such diverse situations as
coronal flux tubes, stellar winds, rotating accretion disks, and jets emitted from radio galaxies. These flows have speeds
which substantially influence the background stationary equilibrium state, if such a state exists at all. Consequently, it
is important to study both the stationary states of magnetized plasmas with flow and the waves and instabilities they exhibit.
We will present new results along these lines, extending from the discovery of gaps in the continuous spectrum and low-frequency
Alfvén waves driven by rotation to the nonlinear flow patterns that occur when the background speed traverses the full range
from sub-slow to super-fast.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
282.
M. Pietrolungo S. Lepidi L. Cafarella D. Di Mauro 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
The aim of this study is to investigate the characteristics of low frequency (∼0.5–5 mHz) geomagnetic field fluctuations as recorded at two Antarctic stations within the polar cap: the Italian observatory Mario Zucchelli Station (TNB) and the French–Italian observatory Dome C (DMC) in order to investigate the spatial extension and propagation characteristics of the phenomena observed at very high latitude. The stations have approximately the same geographic latitude, but a very different corrected geomagnetic latitude, being DMC close to the geomagnetic pole and TNB closer to the auroral oval. 相似文献
283.
T. Moreau E. Cadier F. Boy J. Aublanc P. Rieu M. Raynal S. Labroue P. Thibaut G. Dibarboure N. Picot L. Phalippou F. Demeestere F. Borde C. Mavrocordatos 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2021,67(6):1870-1886
This paper describes an innovative method for processing nadir altimeter data acquired in Synthetic Aperture Radar (SAR) mode, enhancing the system performances over open ocean. Similarly to the current SAR data processing scheme, the so-called LR-RMC (Low Resolution with Range Migration Correction) method, originally designed by Phalippou and Demeester (2011), includes Doppler beam forming, Doppler shift correction and range correction. In LR-RMC, however, an alternative and less complex averaging (stacking) operation is used so that all the Doppler beams produced in a radar cycle (4 bursts of 64 beams for the open-burst Sentinel-3-mode altimeter) are incoherently combined to form a multi-beam echo. In that manner, contrarily to the narrow-band SAR technique, the LR-RMC processing enlarges the effective footprint to average out the effects of surface waves and particularly those from small sub-mesoscale structures (<1 km) that are known to impact SAR-mode performances. On the other hand, the number of averaged beams is as high as in current SAR-mode processing, thus providing a noise reduction at least equally good. The LR-RMC method has the added benefit of reducing the incoherent integration time with respect to the SAR-mode processing (50 ms compared to 2.5 s) limiting possible surface movement effects. By processing one year of Sentinel-3A SRAL SAR-mode data using the LR-RMC method, it is shown that the swell impact on the SAR altimeter performances is totally removed and that an improvement of 10–50% is obtained in the measurement noise of the sea surface height and significant wave height with respect to SAR mode. Additionally, observational capabilities over the middle scales are enhanced potentially allowing the ocean mesoscale features to be retrieved and observations assimilated more usefully in ocean models. 相似文献
284.
Christian KlingenbergDepartment of Applied Mathematics Würzburg UniversityAm Hubland Würzburg Germany 《南京航空航天大学学报(英文版)》2001,18(Z1)
INTRODUCTIONConsider the Euler equations supplementedby an additional reactive equation which consistsof a scalar balance law for the mass fraction ofunburntgasρρuρEρY t+ρuρu2 + pρu E + upρu Y x=κ000-ρΘ( T) Ywhereρ is the density,ρu the momentum,ρEthe total specific energy,ρY the mass fraction ofunburnt gas( 0≤ Y≤ 1 ) ,κ a large number( thereaction rate) and T temperature.Θ( T) =01 if T≤ Tignif T>Tign,Tign is the ignition temperature,E=pγ- 1 + u22 + q0 Y,p is … 相似文献
285.
彗星环境中尘埃等离子体的电荷涨落和静电波动 总被引:3,自引:1,他引:3
本文分析了尘埃等离子体中尘埃颗粒的带电过程,给出了一套自洽的工流体方程组.运用这组方程研究了尘埃电荷的起伏涨落,得到了非磁化均匀尘埃等离子体中静电波动的色散关系.针对彗星空间环境中尘埃等离子体的特点,讨论了尘埃电荷的涨落对各种静电波动的影响. 相似文献
286.
Nikolai Baranets Yuri Ruzhin Nikolai Erokhin Valeri Afonin Jaroslav Vojta Jan Šmilauer Karel Kudela Jan Matišin Mircea Ciobanu 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
In this paper the investigation of wave-particle interaction during simultaneous injection of electron and xenon ion beams from the satellite Intercosmos-25 (IK-25) carried out using the data of the double satellite system with subsatellite Magion-3 (APEX). Results of active space experiment devoted to the beam-plasma instability are partially presented in the paper Baranets et al. (2007). A specific feature of the experiment carried out in orbits 201, 202 was that charged particle flows were injected in the same direction along the magnetic field lines B0 so the oblique beam-into-beam injection have been produced. Results of the beam-plasma interaction for this configuration were registered by scientific instruments mounted on the station IK-25 and Magion-3 subsatellite. Main attention is paid to study the electromagnetic and longitudinal waves excitation in different frequency ranges and the energetic electron fluxes disturbed due to wave-particle interaction with whistler waves. The whistler wave excitation on the 1st electron cyclotron harmonic via normal Doppler effect during electron beam injection in ionospheric plasma are considered. 相似文献
287.
Debasish Roy Biswajit Sahu 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2021,67(3):1039-1048
Within a quantum hydrodynamic model and using the reductive perturbation technique, the nonlinear ion-acoustic wave (IAW) excitations due to a moving charged object in an electron-pair-ion quantum plasma are studied both analytically and numerically. In such quantum plasmas we have derived forced Korteweg-de Vries (fKdV) type equation for finite amplitude nonlinear IAWs. The effect of relevant plasma parameters on solitonic excitations is investigated. Numerical simulation shows the generation of advancing solitons ahead of the forcing term traveling at a faster rate with trailing wakes behind the forcing disturbance. It is found that propagation characteristics of nonlinear excitations are significantly affected by quantum parameter. Additionally, we have pursued our analysis by extending it to account for arbitrary amplitude IA solitons, and derived a system of nonlinear differential equations which are analyzed numerically to study the dynamics. Nonlinear analysis predicts the existence of periodic and quasiperiodic nature of the nonlinear system and reveals that the transition from quasiperiodic to periodic behavior occurs due to the variation of quantum diffraction. 相似文献
288.
289.
290.
A. Guharay P.P. Batista B.R. Clemesha S. Sarkhel 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
The effects of a major stratospheric sudden warming (SSW) at extratropical latitudes have been investigated with wind and temperature observations over a Brazilian station, Cachoeira Paulista (22.7°S, 45°W) during September–October 2002. In response to the warming at polar latitudes a corresponding cooling at tropical and extratropical latitudes is prominent in the stratosphere. A conspicuous signature of latitudinal propagation of a planetary wave of zonal wavenumbers 1 and 2 from polar to low latitude has been observed during the warming period. The polar vortex which split into two parts of different size is found to travel considerably low latitude. Significant air mass mixing between low and high latitudes is caused by planetary wave breaking. The meridional wind exhibits oscillations of period 2–4 days during the warming period in the stratosphere. No wave feature is evident in the mesosphere during the warming period, although a 12–14 day periodicity is observed after 2 weeks of the warming event, indicating close resemblance to the results of other simultaneous investigations carried out from high latitude Antarctic stations. Convective activity over the present extratropical station diminishes remarkably during the warming period. This behavior is possibly due to destabilization and shift of equatorial convective active regions towards the opposite hemisphere in response to changes in the mean meridional circulation in concert with the SSW. 相似文献