首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   800篇
  免费   99篇
  国内免费   193篇
航空   582篇
航天技术   194篇
综合类   123篇
航天   193篇
  2024年   2篇
  2023年   14篇
  2022年   22篇
  2021年   39篇
  2020年   30篇
  2019年   42篇
  2018年   43篇
  2017年   40篇
  2016年   40篇
  2015年   39篇
  2014年   58篇
  2013年   56篇
  2012年   60篇
  2011年   77篇
  2010年   60篇
  2009年   60篇
  2008年   51篇
  2007年   65篇
  2006年   52篇
  2005年   34篇
  2004年   32篇
  2003年   27篇
  2002年   24篇
  2001年   13篇
  2000年   17篇
  1999年   12篇
  1998年   10篇
  1997年   12篇
  1996年   9篇
  1995年   10篇
  1994年   7篇
  1993年   13篇
  1992年   7篇
  1991年   2篇
  1990年   5篇
  1989年   5篇
  1988年   3篇
排序方式: 共有1092条查询结果,搜索用时 31 毫秒
991.
Extreme events are defined as those events in which the characteristics (e.g. field strength, speed, intensity of radiation, energies) of the associated phenomena (e.g. solar flares, coronal mass ejections, solar proton events) are some orders of magnitude larger than in other events. Such strong events commonly occur about two years before and after sunspot maximum and some strong events occur as well in the declining phase before the solar activity minimum [Bothmer V., Zhukov A. The 11 Sun as the prime source of space weather, in: Bothmer, V., Daglis, I. (Eds.), Space Weather: Physics and Effects, Springer Praxis Books, 12 pp. 438, 2007]. In the first part of the paper the characteristics of the Jan. 2005 and Dec. 2006 events are given. This is followed by a presentation of the effects that were encountered on technological systems and also addresses the issue of what could have occurred on biological systems during such events. The second part of the paper deals with how one should go about analyzing solar extreme events - as part of the global distribution of all events or as ”outliers” with their own special characteristics.  相似文献   
992.
余江  吴劲松 《航空计算技术》2011,41(1):48-50,56
航路分析的主体是飘降分析与供氧分析,是高原航路开辟前所必须做的性能分析工作。传统方法在确定航迹下方特定宽度范围内的地形剖面时,存在巨大的手工地图作业,工作量巨大且不能保证精度要求。以地理信息系统数字高程模型为基础,通过建立航线分析自动化软件系统,对实际高原航线下方的地形剖面进行搜索计算,解决了这类问题。作为算例,进行了几种情况下的成都拉萨航线地形剖面的对比分析。  相似文献   
993.
We use a simple numerical model (González-Esparza, J.A., Santillán, A., Ferrer, J. A numerical study of the interaction between two ejecta in the interplanetary medium: one and two dimensional hydrodynamic simulations, Ann. Geophys. 22, 3741–3749, 2004) to study the evolution of three events in the solar wind reported by Wang et al. (Wang, Y.M., Ye, P.Z., Wang, S. Multiple magnetic clouds: several examples during March–April 2001. J. Geophys. Res. 108, 1370, 2003, doi:10.1029/2003JA009850), where two interacting ejecta detected in situ by ACE near 1 AU were related to CMEs observed previously by SOHO-LASCO. The study is based on a 1-D hydrodynamic model using the ZEUS code (Stone, J.M., Norman, M. ZEUS 2-D: A radiation magnetohydrodynamics code for astrophysical flows in two dimensions, I, the hydrodynamics algorithms and tests, Astrophys. J. 80, 753, 1992). Although this model cannot address either the magnetic field dynamics or the complex geometrical effects intrinsic in the three-dimensional nature of the phenomena, it illuminates the transferring of momentum and evolution of interacting large-scale solar wind disturbances in those cases where there is no merging (magnetic reconnection) between the two ejecta. This model can reproduce, in some cases, characteristics of the events such as transit times and flow signatures as inferred from the two-point measurements from spacecraft.  相似文献   
994.
We study the short-term topological changes of equatorial and polar coronal hole (CH) boundaries, such as a variation of their area and disintegration, associated to reconnection with nearby (within 15° distance) quiescent prominence magnetic fields leading to eruptions and subsequent Coronal Mass Ejections (CMEs). The examples presented here correspond to the recent solar minimum years 2008 and 2009. We consider a temporal window of one day between the CH topological changes and the start and end times of prominence eruptions and onset of CMEs. To establish this association we took into account observational conditions related to the instability of prominence/filaments, the occurrence of a CME, as well as the subsequent evolution after the CME. We found an association between short-term local topological changes in CH boundaries and the formation/disappearance of bright points near them, as well as, between short-term topological changes within the whole CH and eruptions of nearby quiescent prominences followed by the appearance of one or more CMEs.  相似文献   
995.
Estimating the magnetic storm effectiveness of solar and associated interplanetary phenomena is of practical importance for space weather modelling and prediction. This article presents results of a qualitative and quantitative analysis of the probable causes of geomagnetic storms during the 11-year period of solar cycle 23: 1996–2006. Potential solar causes of 229 magnetic storms (Dst ? −50 nT) were investigated with a particular focus on halo coronal mass ejections (CMEs). A 5-day time window prior to the storm onset was considered to track backward the Sun’s eruptions of halo CMEs using the SOHO/LASCO CMEs catalogue list. Solar and interplanetary (IP) properties associated with halo CMEs were investigated and correlated to the resulting geomagnetic storms (GMS). In addition, a comparative analysis between full and partial halo CME-driven storms is established. The results obtained show that about 83% of intense storms (Dst ? −100 nT) were associated with halo CMEs. For moderate storms (−100 nT < Dst ? −50 nT), only 54% had halo CME background, while the remaining 46% were assumed to be associated with corotating interaction regions (CIRs) or undetected frontside CMEs. It was observed in this study that intense storms were mostly associated with full halo CMEs, while partial halo CMEs were generally followed by moderate storms. This analysis indicates that up to 86% of intense storms were associated with interplanetary coronal mass ejections (ICMEs) at 1 AU, as compared to moderate storms with only 44% of ICME association. Many other quantitative results are presented in this paper, providing an estimate of solar and IP precursor properties of GMS within an average 11-year solar activity cycle. The results of this study constitute a key step towards improving space weather modelling and prediction.  相似文献   
996.
In this work, we present a study of the coronal mass ejection (CME) dynamics using LASCO coronagraph observations combined with in-situ ACE plasma and magnetic field data, covering a continuous period of time from January 1997 to April 2001, complemented by few extreme events observed in 2001 and 2003. We show, for the first time, that the CME expansion speed correlates very well with the travel time to 1 AU of the interplanetary ejecta (or ICMEs) associated with the CMEs, as well as with their preceding shocks. The events analyzed in this work are a subset of the events studied in Schwenn et al. (2005), from which only the CMEs associated with interplanetary ejecta (ICMEs) were selected. Three models to predict CME travel time to Earth, two proposed by Gopalswamy et al. (2001) and one by Schwenn et al. (2005), were used to characterize the dynamical behavior of this set of events. Extreme events occurred in 2001 and 2003 were used to test the prediction capability of the models regarding CMEs with very high LASCO C3 speeds.  相似文献   
997.
The SMESE (SMall Explorer for Solar Eruptions) mission is a microsatellite proposed by France and China. The payload of SMESE consists of three packages: LYOT (a Lyman α imager and a Lyman α coronagraph), DESIR (an Infra-red Telescope working at 35–80 and 100–250 μm), and HEBS (a High Energy Burst Spectrometer working in X- and gamma-rays).  相似文献   
998.
999.
Understanding the evolution of solar wind structures in the inner heliosphere as they approach the Earth is important to space weather prediction. From the in situ solar wind plasma and magnetic field measurements of Pioneer Venus Orbiter (PVO) at 0.72 AU (1979–1988), and of Wind/Advanced Composition Explorer (ACE) missions at 1 AU (1995–2004), we identify and characterize two major solar wind structures, stream interaction regions (SIRs) and interplanetary coronal mass ejections (ICMEs). The average percentage of SIRs occurring with shocks increases significantly from 3% to 24% as they evolve from 0.72 to 1 AU. The average occurrence rate, radial extent, and bulk velocity variation of SIRs do not change from 0.72 to 1 AU, while peak pressure and magnetic field strength both decrease with the radial evolution of SIRs. Within the 0.28 AU distance from the orbit of Venus to that of Earth, the average fraction of ICMEs with shocks increases from 49% to 66%, and the typical radial extent of ICMEs expands by about a fraction of 1.4, with peak pressure and magnetic field strength decreasing significantly. The mean occurrence rate and expansion velocity of ICMEs do not change from 0.72 to 1 AU.  相似文献   
1000.
应用试验模态参数修正理论模型的最佳矩阵逼近法   总被引:3,自引:0,他引:3  
本文从特征方程和模态正交性条件出发,给出了一种应用模态参数识别结果修正理论模型的最佳矩阵逼近方法。该方法通过对识别出的模态矩阵进行奇异值分解并结合特征方程和模态正交条件导出了修正理论模型的通解表达式,在此基础上,给出了最佳逼近解的定义,研究了最佳逼近解的唯一性,给出了最佳修正质量矩阵和刚度矩阵的具体表达式,数值计算表明,本文方法具有很高的修正精度,对于大误差模型也有较好的修正能力,具有一定的应有和  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号