全文获取类型
收费全文 | 390篇 |
免费 | 272篇 |
国内免费 | 80篇 |
专业分类
航空 | 375篇 |
航天技术 | 126篇 |
综合类 | 98篇 |
航天 | 143篇 |
出版年
2025年 | 2篇 |
2024年 | 62篇 |
2023年 | 63篇 |
2022年 | 99篇 |
2021年 | 96篇 |
2020年 | 62篇 |
2019年 | 50篇 |
2018年 | 24篇 |
2017年 | 22篇 |
2016年 | 16篇 |
2015年 | 15篇 |
2014年 | 19篇 |
2013年 | 21篇 |
2012年 | 25篇 |
2011年 | 27篇 |
2010年 | 16篇 |
2009年 | 15篇 |
2008年 | 11篇 |
2007年 | 19篇 |
2006年 | 20篇 |
2005年 | 6篇 |
2004年 | 9篇 |
2003年 | 5篇 |
2002年 | 3篇 |
2001年 | 4篇 |
2000年 | 8篇 |
1999年 | 6篇 |
1998年 | 6篇 |
1997年 | 5篇 |
1996年 | 1篇 |
1995年 | 2篇 |
1994年 | 1篇 |
1993年 | 1篇 |
1991年 | 1篇 |
排序方式: 共有742条查询结果,搜索用时 15 毫秒
621.
提出一种基于极限学习算法的离散过程神经网络模型,用于解决液体火箭发动机状态预测这一难题。首先,在历史数据的基础上建立离散过程神经网络(DPNN)预测模型;然后,根据在线更新的数据样本,采用递推极限学习(EL)算法对双并联前馈离散过程神经网络(DPFDPNN)隐层到输出层的权值进行更新,并应用权值更新后的过程神经网络对发动机状态进行预测;最后,以液体火箭发动机状态预测中氢涡轮泵扬程预测为例,分别采用有权值更新和无权值更新两种预测模型进行了试验。结果表明,通过更新过程神经网络权值可以使模型具有更高的预测精度和更好的适应能力,该方法能够为液体火箭发动机状态预测提供一种有效的解决途径。 相似文献
622.
Kaichang Di Wei Li Zongyu Yue Yiwei Sun Yiliang Liu 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
Craters are distinctive features on the surfaces of most terrestrial planets. Craters reveal the relative ages of surface units and provide information on surface geology. Extracting craters is one of the fundamental tasks in planetary research. Although many automated crater detection algorithms have been developed to exact craters from image or topographic data, most of them are applicable only in particular regions, and only a few can be widely used, especially in complex surface settings. In this study, we present a machine learning approach to crater detection from topographic data. This approach includes two steps: detecting square regions which contain one crater with the use of a boosting algorithm and delineating the rims of the crater in each square region by local terrain analysis and circular Hough transform. A new variant of Haar-like features (scaled Haar-like features) is proposed and combined with traditional Haar-like features and local binary pattern features to enhance the performance of the classifier. Experimental results with the use of Mars topographic data demonstrate that the developed approach can significantly decrease the false positive detection rate while maintaining a relatively high true positive detection rate even in challenging sites. 相似文献
623.
一直以来,航空发动机涡轮叶片的射线检测依靠检验员人工评片。为避免经验差异、眼睛疲劳、标准理解等人为因素影响,有效改善传统射线检测费时费力、效率低下等问题,针对航空发动机涡轮叶片射线图像,基于YOLOv4模型提出了一种双主干特征融合的缺陷自动检测算法(DBFFYOLOv4);通过设计包含所有特征映射的新型连接结构搭建缺陷检测颈部网络,建立了适用于涡轮叶片射线图像的缺陷自动检测模型;针对每个缺陷,采用9次裁剪、旋转和亮度增减的图像数据增强方法扩充样本数据,在此基础上进行了模型训练与测试。结果表明,针对完整涡轮叶片,建立的缺陷检测模型在0.5的置信度阈值下可获得96.7%的平均查准率和91.87%的平均查全率,优于通用目标检测算法YOLOv4模型。9次缺陷裁剪、旋转和亮度增减的图像数据增强方法能够显著提高模型的缺陷检测精度(平均精度分别得到了59.19%和2.53%的提升)。该研究为涡轮叶片自动射线检测提供了一种新方法。 相似文献
624.
文章分析对比了数据恶劣条件下的辐射源个体识别方法。总结了包括不平衡、错误标签、小样本和弱标注 4种情况下的个体识别方法,探讨了辐射源特征提取方法的优点和局限性,对方法中作为技术关键和难点的特征提取方法进行了概括,并指出深度学习在深度特征提取上的优势,以及在辐射源个体识别领域所具有的广泛应用前景,以期对各种情况下的辐射源个体识别方法做出较为全面的补充。 相似文献
625.
《中国航空学报》2023,36(2):284-291
Recently, mega Low Earth Orbit (LEO) Satellite Network (LSN) systems have gained more and more attention due to low latency, broadband communications and global coverage for ground users. One of the primary challenges for LSN systems with inter-satellite links is the routing strategy calculation and maintenance, due to LSN constellation scale and dynamic network topology feature. In order to seek an efficient routing strategy, a Q-learning-based dynamic distributed Routing scheme for LSNs (QRLSN) is proposed in this paper. To achieve low end-to-end delay and low network traffic overhead load in LSNs, QRLSN adopts a multi-objective optimization method to find the optimal next hop for forwarding data packets. Experimental results demonstrate that the proposed scheme can effectively discover the initial routing strategy and provide long-term Quality of Service (QoS) optimization during the routing maintenance process. In addition, comparison results demonstrate that QRLSN is superior to the virtual-topology-based shortest path routing algorithm. 相似文献
626.
作为航空装备的重要传动部件,齿轮箱的故障诊断对保障装备可靠持续适航具有至关重要的作用。随着人工智能技术的不断发展,基于深度学习的方法成为了领域内的研究热点。然而,深度神经网络对超参数设置和训练数据量有严格的要求,难以满足实际工业中快速、准确与稳定的诊断需求。针对此问题,提出了一种基于改进深度森林的诊断方法,实现小训练样本下齿轮箱的多种类混合故障的高效诊断。针对旋转机械振动信号单样本数据的长特性与深度森林模型数据处理成本高的矛盾,设计了基于主成分分析特征提取的深度森林模型,解决原始模型中的数据计算冗余问题。同时,改进的深度森林模型提高了多粒度扫描与级联森林中的数据传递与处理能力,在保障数据多样性的同时,增强模型内的特征代表性,从而提高算法的运行效率和诊断性能。最后,通过控制数据集与训练样本比例变量,开展小训练样本下齿轮箱故障诊断实验研究。结果表明,在训练-总数据比例为50%和10%条件下,所提方法平均诊断精度高达97.3%和82.8%,验证了所提方法的有效性。同时,通过对比研究,所提方法诊断性能优于现有的齿轮箱智能故障诊断方法。 相似文献
627.
《中国航空学报》2023,36(8):351-365
The aerodynamic test in the pulse combustion wind tunnel is very important for the design, evaluation and optimization of aerodynamic characteristics of the hypersonic aircraft. The test accuracy even affects the success or failure of hypersonic aircraft development. In the aerodynamic test of pulse combustion wind tunnel, the aerodynamic signal is disturbed by the inertial force signal, which seriously affects the test accuracy of aerodynamic force. Aiming at the above problems, this paper innovatively proposes an aerodynamic intelligent identification method, that is the transfer learning network based on adaptive Empirical Modal Decomposition (EMD) and Soft Thresholding (TLN-AE&ST). Compared with the existing aerodynamic intelligent identification model based on deep learning technology, this study introduces the transfer learning idea into the aerodynamic intelligent identification model for the first time. The TLN-AE&ST effectively alleviates the problem of scarcity of training samples for intelligent models due to the high cost of wind tunnel tests, and provides a new idea for further implementation of deep learning technology in the field of wind tunnel aerodynamic testing. And this study designed residual attention block with soft threshold and dense block with adaptive EMD in TLN-AE&ST model. Residual attention block with soft threshold module can more effectively suppress the influence of instrument noise signal on model training effect. Dense block with adaptive EMD makes the deep learning model no longer a black box to a certain extent, and has certain physical significance. Finally, a series of wind tunnel tests were carried out in the Φ = 2.4 m pulse combustion wind tunnel of China Aerodynamic Research and Development Center to verify the effectiveness of TLN-AE&ST. 相似文献
628.
随着我国航空业对飞行员需求的提高,航校的飞行培训行业也获得很高的关注,对航校的通用教练机燃油消耗进行预测估计是十分必要的。结合训练大纲,文中基于训练任务的阶段性特点,认为机动训练阶段和起落航线阶段为训练任务的复杂阶段,将学习曲线应用于飞行学员的训练任务复杂阶段,引入学习率作为燃油消耗的影响因素之一,利用粒子群算法寻找最优参数,通过支持向量机回归建立通用教练机复杂阶段的燃油消耗模型,估计燃油消耗量。 相似文献
629.
《中国航空学报》2023,36(5):447-464
Person re-Identification (reID), aiming at retrieving a person across different cameras, has been playing a more and more important role in the construction of smart city and social security. For deep-learning-based reID methods, it has been proved that using local feature together with global feature could help to give robust representation for person retrieval. Human pose information can provide the locations of human skeleton to effectively guide the network to pay more attention to these key areas, and can also help to reduce the noise distractions from background or occlusions. Based on human pose, a Pose Guided Graph Attention (PGGA) network is proposed in this paper, which is a multi-branch architecture consisting of one branch for global feature and two branches for local key-point features. A graph attention convolution layer is carefully designed to re-assign the contribution weight of each extracted local feature by modeling the similarity relations. The experimental results demonstrate the effectiveness of our approach on discriminative feature learning. Our model achieves the state-of-the-art performance on several mainstream evaluation datasets. A plenty of ablation studies and different kinds of comparison experiments are conducted to prove the effectiveness of this work, including the tests on occluded datasets and cross-domain datasets. Moreover, we further design supplementary tests in practical scenario to indicate the advantage of our work in real-word applications. 相似文献
630.
与传统方法相比,基于深度学习的空气动力学建模方法建模速度快、精度高。但是传统深度学习采用的全连接神经网络或卷积神经网络往往没有考虑输入数据本身的差异对预测结果的影响,而飞行器的外形特征参数和飞行状态参数在数据类型上存在较大差异。在同时使用这两种参数预测气动特性时,如果忽视这些差异性,预测结果的精度势必会损失。受到多任务学习和集群网络方法的启发,提出了一种基于多任务学习的翼型外形参数与飞行状态参数联合建模方法:大差异性多任务学习网络(LD-MTL)。该方法首先将数据集划分为多个任务,随后将整个学习网络分为多个集群,分别根据不同的任务学习所预测的气动性能相关知识,最终对每个集群所学习到的相关知识进行融合,得到预测结果。通过对比实验,证明了在进行气动大差异性数据建模时,本文提出的结构能更好地反映数据差异性对模型预测精度的影响程度,有更高的预测精度,且能对此差异性进行量化分析。 相似文献