首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   439篇
  免费   84篇
  国内免费   97篇
航空   506篇
航天技术   33篇
综合类   45篇
航天   36篇
  2024年   1篇
  2023年   10篇
  2022年   19篇
  2021年   24篇
  2020年   36篇
  2019年   23篇
  2018年   28篇
  2017年   33篇
  2016年   41篇
  2015年   33篇
  2014年   43篇
  2013年   44篇
  2012年   41篇
  2011年   45篇
  2010年   31篇
  2009年   33篇
  2008年   35篇
  2007年   16篇
  2006年   15篇
  2005年   9篇
  2004年   10篇
  2003年   6篇
  2002年   6篇
  2001年   8篇
  2000年   5篇
  1999年   2篇
  1998年   2篇
  1997年   6篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1993年   4篇
  1991年   2篇
  1990年   2篇
  1988年   1篇
排序方式: 共有620条查询结果,搜索用时 15 毫秒
291.
大子午扩张变几何涡轮可调叶片端区设计优化   总被引:1,自引:0,他引:1  
提出采用高负荷设计以减少叶片数的方法,增大圆盘直径而减小泄漏面积;结合叶片进行后加载改型措施以减小由于高负荷设计所增加的二次流损失.对定几何涡轮、仅有驱动轴的变几何涡轮与带圆盘型冠的变几何涡轮的流场进行三维数值模拟计算,分析了3种涡轮性能的优劣.结果表明:大间隙尺度下了间隙泄漏涡强度较大,并与通道涡相互融合,从而增大了泄漏损失区域,增加了泄漏损失;而在涡轮叶片由于高负荷设计会增加了主流区的二次流损失.该方法可以有效地减小周向泄漏面积,极大地抑制由大间隙尺度所导致的间隙泄漏涡与通道涡的相互融合,减小泄漏损失.而通过后加载改型的措施,抑制了主流区的通道涡的发展趋势,减小了二次流损失.这两种措施结合后的变几何涡轮具有较高的全工况性能.   相似文献   
292.
压力面小翼对涡轮叶栅不同间隙下流场影响的实验   总被引:3,自引:0,他引:3  
对某涡轮叶栅加装不同宽度的压力面小翼对叶栅间隙流场的影响进行了实验研究,详细测量了间隙高度为0.5%h,1%h,1.5%h时叶栅出口流场和叶片表面静压分布情况.通过实验结果分析得出:随着间隙高度的增加,间隙泄漏流动加剧,泄漏涡增强,叶栅总损失增加,同时使上通道涡的强度减弱;压力面小翼在间隙高度为0.5%h时对间隙泄漏流动的控制效果较好,宽度为0.4倍当地叶片厚度的压力面小翼能使叶栅总损失降低18%.间隙高度为1%h时,0.3倍当地叶片厚度的压力面小翼效果最佳,使叶栅总损失降低10.37%.间隙高度为1.5%h时,压力面小翼对间隙泄漏流动基本没有影响,但在一定程度上降低了叶栅总损失.   相似文献   
293.
叶尖小翼对跨声速压气机转子变工况性能的影响   总被引:3,自引:1,他引:3  
为了进一步揭示叶尖小翼对跨声速压气机转子气动性能的影响机理,利用数值模拟方法研究了不同叶尖小翼安装方式对跨声速压气机转子气动性能的影响,并在分析跨声速压气机转子不同转速时的流动失稳机制的基础上探讨了叶尖小翼的扩稳机理.研究结果表明:最大宽度的压力面小翼在100%,80%及60%设计转速下分别使得跨声速压气机转子失速裕度增加8.1%,17.4%和7.1%.100%及80%设计转速时,转子叶尖区激波/叶尖泄漏涡干涉及泄漏涡破裂后产生的阻塞区是影响跨声速压气机转子内部流动失稳的关键因素.压力面小翼的扩稳机制在于降低了叶尖泄漏流强度,减弱了激波/叶尖泄漏涡干涉的强度,减小了叶尖泄漏涡破裂后产生的阻塞区.60%设计转速时,转子叶片吸力面气动过载导致的大面积的分离流动是诱发该跨声速压气机转子失稳的主要机制,此时压力面小翼的扩稳机制在于降低了转子叶尖来流的等效攻角,减弱了转子吸力面附面层三维分离的程度.   相似文献   
294.
采用混合方法对气流作用下的膨胀腔的非稳态流动和气动噪声进了数值仿真分析。建立基于有限体积法的流体仿真模型,采用大涡模拟方法对膨胀腔内部非稳态流动进行计算。数值仿真结果捕捉到了腔体内部非稳态流动以及涡量的发展变化过程,并与实验观测结果基本吻合。采用积分插值的方法将流场结果插入声学网格上,基于气动声学理论计算腔体内部的流噪声源。建立声学仿真模型,将流噪声源导入声场网格中计算远场响应点的声压,并与实验结果进行对比,声压级以及共振频率都吻合良好。结果表明:混合仿真方法准确直观揭示出管内流噪声产生的机理和过程,尾管辐射噪声的仿真结果与实验结果及理论计算结果的偏差都在5%以内。   相似文献   
295.
超声速喷流混合流场大涡模拟   总被引:1,自引:3,他引:1  
以光学窗口外冷喷流为研究背景,采用大涡模拟方法对后台阶外形切向喷流混合流场进行了研究。数值方法基于隐式亚格子模型,采用高精度WENO格式进行空间离散,并通过超声速平面混合层流动对数值方法进行了考核验证。喷流混合流场计算模型与试验一致,来流和喷流马赫数分别为3.4和2.5。数值模拟清晰地捕捉到了流场波系以及混合剪切层、壁面边界层等典型流场结构,并精细预测了混合层发生失稳、转捩及发展为充分发展湍流的时空发展过程。数值模拟得到的湍流大尺度结构的位置和形态与实验图像一致。通过对瞬时流场、统计平均流场和脉动参数的分析,揭示了流场结构特征及其时空演化规律,并获得了流场密度脉动特性。   相似文献   
296.
针对金属封严环设计中泄漏率估算问题,综合对密封系统宏观结构和微观表面接触变形的考量,提出一种基于数值计算的泄漏率预测方法。对密封整体结构进行计算,以计算值(接触应力、接触面积)为输入参数,以表面粗糙度为评价指标建立微观粗糙表面,使用有限元法(FEM)进行接触计算后建立泄漏通道模型,在对泄漏缝隙内流体流动特性确定后通过计算流体力学(CFD)方法计算得到泄漏率。使用密封试验台进行泄漏率试验,将计算值与试验结果相比较。研究表明:随着接触应力增加、表面粗糙度值降低以及内外腔压差增长,密封系统泄漏率逐渐减小;所提出的方法极大地摆脱了泄漏率获取对于试验仪器的依赖性,并能够较为有效地预测金属密封结构的泄漏率,对先进的金属封严环的设计和评估具有重要意义。   相似文献   
297.
为了揭示欠膨胀激励射流的流动机理,以及考察不同喷压比下射流对相同激励的流动响应,采用大涡模拟方法,对喷压比NPR=5.60和9.34的欠膨胀定常射流和激励射流进行了三维数值计算。激励频率为定常射流中固有的轴对称频率=14.569kHz,激励形式为在射流喷管入口处施以正弦压力扰动。结果表明,特征频率激励影响射流的声场特征,缩小射流核心区的范围,减少射流近场的激波胞格数目,并影响射流气体与环境空气的混合。同时,激励射流的特征频率转变为激励频率及其高阶倍频,激励射流的主不稳定模态均为轴对称模态。其中,NPR=9.34的欠膨胀射流的主不稳定模态和外加压力扰动的形式相一致,射流与外加激励发生了更加剧烈的流动耦合和响应。这使得在NPR=9.34时,射流核心区长度减小得更多,压力脉动的振幅更大,激励对射流混合的增强作用更加明显。  相似文献   
298.
针对一种可极大提升涵道比的气驱附加涵道风扇推进动力系统开展研究,采用数值模拟手段重点分析了其核心部件叶尖涡轮的流动特征和工作机理,为后续发展这种大涵道比推进动力奠定理论基础。研究表明:叶尖涡轮实质上是具有低稠度低展弦比特征的轴流涡轮,稠度可低至0.6,展弦比可低至0.4。低展弦比造成的叶尖涡轮间隙泄漏损失增大为原来的2倍,泄漏涡径向侵入叶根,主流流动损失加剧,大大降低了低稠度涡轮能量提取效果;稠度降低会使得喉道位置迁移,导致气流偏转和膨胀加速能力大幅下降;基于这一结构,提出有效提能区和能量提取率来阐明其做功机理并表征低稠度叶尖涡轮的出功能力。   相似文献   
299.
不同轴向引气位置对自循环机匣处理的影响研究   总被引:1,自引:2,他引:1       下载免费PDF全文
晏松  楚武利  张皓光  刘凯 《推进技术》2019,40(7):1478-1489
针对转子失速时叶顶的具体流动情况,基于抽吸叶顶堵塞区低速流体的目的,设计了四种新的自循环机匣处理方案,探究其扩稳机理与常规自循环机匣处理的作用差异。数值计算选用Numeca Fine软件包的Euranus求解器,计算结果表明,通过抽吸叶顶堵塞区低速流体设计的自循环机匣处理结构,其达到的扩稳效果高于常规的自循环机匣处理。在优化设计中,当轴向引气位置位于转子叶顶堵塞区核心附近时,达到的扩稳效果最好,最大综合裕度改进量能达到15.00%。此外,本文还分析了自循环机匣处理后转子叶顶流场的差异,得出自循环机匣处理的扩稳机理在于把造成叶顶区堵塞流动的低速气流吸走,抑制了叶顶泄漏流动,改善了叶顶区的流动状况,以此来扩大转子的稳定工作范围。  相似文献   
300.
以级压比为4.1的Krain叶轮为研究对象,数值研究流量、转速和叶顶间隙对叶顶泄漏涡(TLV)轨迹和主流/叶顶泄漏流交界面(ITLMF)位置的影响。数值结果表明:流量减小、转速升高和叶顶间隙减小,使叶顶泄漏涡轨迹远离吸力面、主流/叶顶泄漏流交界面向上游移动。将主流与叶顶泄漏流的相互作用简化为一股自由来流与一股逆向壁面射流的相互作用,并对叶顶泄漏流速度进行模化。利用主流/叶顶泄漏流动量平衡原则确定交界面位置,采用Zhao模型预测叶顶泄漏涡轨迹,并建立叶顶泄漏流的有效起始位置与叶顶间隙的关系,从而建立亚声速离心压气机失速预测模型。结果表明,模型预测值与CFD预测值符合较好,方均根误差低于2.42%。   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号