首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   406篇
  免费   162篇
  国内免费   58篇
航空   88篇
航天技术   268篇
综合类   7篇
航天   263篇
  2023年   15篇
  2022年   23篇
  2021年   40篇
  2020年   25篇
  2019年   49篇
  2018年   37篇
  2017年   34篇
  2016年   35篇
  2015年   29篇
  2014年   72篇
  2013年   41篇
  2012年   38篇
  2011年   37篇
  2010年   31篇
  2009年   24篇
  2008年   26篇
  2007年   23篇
  2006年   12篇
  2005年   9篇
  2004年   5篇
  2003年   7篇
  2002年   6篇
  2001年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1986年   1篇
排序方式: 共有626条查询结果,搜索用时 15 毫秒
391.
The Geospace Double Star Exploration Project (DSP) contains two small satel lites operating in the near-earth equatorial and polar regions respectively. The tasks of DSP are: (1) to provide high-resolution field, particle and wave mea surements in several important near-earth active regions which have not been covered by existing ISTP missions, such as the near-earth plasma sheet and its boundary layer, the ring current, the radiation belts, the dayside magnetopause boundary layer, and the polar region; (2) to investigate he trigger mechanisms of magnetic storms, magnetospheric substorms, and magnetospheric particle storms, as well as the responses of geospace storms to solar activities and in terplanetary disturbances; (3) to set up the models describing the spatial and temporal variations of the near-earth space environment.To complete the mission, there are eight instruments on board the equatorial satellite and the polar satellite, respectively. The orbit of the equatorial satellite is proposed with a perigee at 550km and an apogee at 60 000km, and the inclination is about 28.5°; while the orbit of the polar satellite with a perigee at 700 km and an apogee at 40 000 km, as well as an inclination about 90°. The equatorial and polar satellites are planed to be launched into orbits in June 2003 and December 2003 respectively to take coordinating measurements with Cluster Ⅱ and other missions.  相似文献   
392.
天线组阵能否完全替代大口径天线有一个关键性难题,就是天线阵是否支持上行链路组阵。深空航天器无法将不同地面天线的上行信号对齐,所以上行链路信号的调整必须在地面完成。针对上行组阵发射机相位调整问题,提出一种基于VLBI(Very Long Baseline Interferometry,甚长基线干涉测量)技术的接收模式天线上行组阵标校方案,并对标校精度进行了简要分析。将上行链路时延分解为几何时延和发射系统时延,建立了几何时延模型,通过标定接收时延和发射时延,便可以得到天线阵元间的相位标校值。理论分析结果表明,该方案具有一定的可行性,对上行组阵相位标校的研究具有一定的借鉴意义。  相似文献   
393.
《Space Policy》2014,30(4):185-189
It is time to think about the rationales of space exploration, more than 50 years after the beginning of human space flight. Between J.F. Kennedy words (“landing a man on the Moon and returning him safely to Earth”) and the Mars One, what means today the dangers of exploration, or the concept of “representative of mankind” applied to the astronauts? Beyond the financial, technical and human risks, exploration, and today space exploration, belongs always to the human identity, the way to confront human nature (especially imagination) to the reality of time and space.  相似文献   
394.
One hundred fifty-five college undergraduates from Syracuse University were surveyed to assess the relationship between their scientific literacy and attitudes to US space exploration. The students were divided into four sections based on majors: basic sciences (n = 41), health sciences (n = 29), political science (n = 36) and other (n = 49). As a whole the students had high scientific knowledge and overall support for human space exploration. There was a significant correlation (rho = 0.33, P < 0.01) between the dependent variables, suggesting that those with the highest scientific literacy looked more favorably upon US space exploration. When evaluated by college major, significant correlations were evident for political science and health science majors only (P < 0.05). There were no differences in scientific literacy scores between males and females and among the various college majors (P > 0.05). Attitudes towards US space exploration varied by sex only, indicating that males were more supportive than females (P < 0.05). These data suggest that individuals with adequate scientific literacy tend to look more favorably upon space exploration. Further research should be done to assess these factors in other populations, as well as to develop strategies to improve scientific literacy and shape positive attitudes towards space exploration in the US population.  相似文献   
395.
Sample return is an essential component of solar system exploration. Samples provide a unique data set that is critical for understanding formation and evolution of our solar system. This uniqueness is based on the scale of observations, precision of measurements, the ability to modify experiments as logic and technology dictate, and the ability to use instruments free of the constraints on mass, power, reliability, and data rate of flight instruments. Advances in analytical capabilities in recent years enable fundamental measurements to be made on extremely small samples, greatly reducing mass constraints on robotic sample return spacecraft. Sample studies provide irreplaceable ground truth for remotely-sensed data on planetary surfaces and fit within a variety of architectures for human exploration of the solar system.  相似文献   
396.
The Japan Aerospace Exploration Agency is currently developing the second asteroid sample return mission, designated as Hayabusa 2. Following the successful return of Hayabusa from the asteroid “Itokawa”, Hayabusa 2 is designed as a round-trip mission to the asteroid “1999 JU3”. The 1999 JU3 is a C-type asteroid, which is believed to contain organic matter and hydrated minerals. Thus, it is expected that successful sample collection will provide additional knowledge on the origin and evolution of the planets and, in particular, the origin of water and organic matter. The current mission scenario will enable the spacecraft to reach 1999 JU3 in the middle of 2018 and perform an asteroid proximity operation for 1.5 years. Three touch downs for sampling and one 2-m-class crater generation by means of a high-speed impact operation are planned during the asteroid proximity operation. The samples are to be brought back to the Earth by a re-entry capsule. The present paper describes the system design of Hayabusa 2, some key technical challenges of the mission, and the development status.  相似文献   
397.
大学新生入学教育是高校思想政治工作者研究和思考的重要课题,通过对大学新生进行校史校风、法制校纪、理想信念、专业学习、人格心理与生活、初级职业规划和职业指导等六个模块的教育,帮助大学生尽快完成从中学到大学的角色转变,尽快适应大学生活,最终实现培养具有创新精神和实践能力的高级专门人才的目标。  相似文献   
398.
The Desert Research and Technology Studies (D-RATS) 2011 field test involved the planning and execution of a series of exploration scenarios under operational conditions similar to those expected during a human exploration mission to a near-Earth asteroid (NEA). The focus was on understanding the operations tempo during simulated NEA exploration and the implications of communications latency and limited data bandwidth. Anchoring technologies and sampling techniques were not evaluated due to the immaturity of those technologies and the inability to meaningfully test them at D-RATS. Reduced gravity analogs and simulations are being used to fully evaluate Space Exploration Vehicle (SEV) and extravehicular (EVA) operations and interactions in near-weightlessness at a NEA as part of NASA's integrated analogs program. Hypotheses were tested by planning and performing a series of 1-day simulated exploration excursions comparing test conditions all of which involved a single Deep Space Habitat (DSH) and either 0, 1, or 2 SEVs; 3 or 4 crewmembers; 1 of 2 different communications bandwidths; and a 50-second each-way communications latency between the field site and Houston. Excursions were executed at the Black Point Lava Flow test site with a remote Mission Control Center and Science Support Room at Johnson Space Center (JSC) being operated with 50-second each-way communication latency to the field. Crews were composed of astronauts and professional field geologists. Teams of Mission Operations and Science experts also supported the mission simulations each day. Data were collected separately from the Crew, Mission Operations, and Science teams to assess the test conditions from multiple perspectives. For the operations tested, data indicates practically significant benefits may be realized by including at least one SEV and by including 4 versus 3 crewmembers in the NEA exploration architecture as measured by increased scientific data quality, EVA exploration time, capability assessment ratings, and consensus acceptability ratings provided by Crew, Mission Operations, and Science teams. A combination of text and voice was used to effectively communicate over the communications latency, and increased communication bandwidth yielded a small but practically significant improvement in overall acceptability as rated by the Science team, although the impact of bandwidth on scientific strategic planning and public outreach was not assessed. No effect of increased bandwidth was observed with respect to Crew or Mission Operations team ratings of overall acceptability.  相似文献   
399.
Since the beginning space was an exclusive domain of public organizations, the role of privates is becoming more and more important, and not only in commercial activities. However, the main international treaties dealing with this subject are still based on the assumption that space activities are mostly reserved to states. In the last decade the idea that the role of privates could include the management of space infrastructures and launch vehicles gained support and now private launch services are a reality. An even wider role of privates is now advocated and private exploration and exploitation missions are discussed. This requires that space activity in general can generate an attractive return and those business models are identified.  相似文献   
400.
In accordance with its charter, the International Lunar Exploration Working Group (ILEWG) reports to COSPAR, and a summary was given at the Beijing COSPAR 2006 Assembly on ILEWG activities conducted since the previous COSPAR 2004 assembly held in Paris. This included reports from the 6th and 7th ILEWG International Conference on Exploration and Utilization of the Moon, held respectively in Udaipur, India on 22–26 November 2004 (ICEUM6) and in Toronto, Canada on 18–23 September 2005 (ICEUM7). We give in this issue of Advances in Space Research the “lunar declarations” from these ICEUM conferences, as well as for the ICEUM8 conference held in Beijing immediately after the 2006 COSPAR Assembly. One year after the COSPAR Beijing assembly, the 9th ILEWG International Conference on Exploration and Utilization of the Moon (ICEUM9), was held in Sorrento, Italy on 18–23 September 2007. We report also in this issue the “Sorrento Lunar Declaration” in advance of the ILEWG formal report to be given at the COSPAR Assembly to be held in Montreal, Canada in July 2008.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号