首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   318篇
  免费   32篇
  国内免费   118篇
航空   67篇
航天技术   203篇
综合类   19篇
航天   179篇
  2023年   6篇
  2022年   12篇
  2021年   21篇
  2020年   27篇
  2019年   17篇
  2018年   29篇
  2017年   11篇
  2016年   12篇
  2015年   18篇
  2014年   48篇
  2013年   29篇
  2012年   23篇
  2011年   22篇
  2010年   19篇
  2009年   27篇
  2008年   25篇
  2007年   15篇
  2006年   11篇
  2005年   9篇
  2004年   5篇
  2003年   7篇
  2002年   9篇
  2001年   10篇
  2000年   32篇
  1999年   13篇
  1998年   3篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
排序方式: 共有468条查询结果,搜索用时 0 毫秒
41.
磨粒分析技术及其在发动机故障诊断中的应用   总被引:5,自引:1,他引:5  
基于显微形态学方法的磨损微粒显微分析技术是近年来出现的解决发动机磨损故障诊断问题的新方法之一。应用形态学分析方法建立一套磨粒显微特征描述体系提取磨粒特征信息,作为磨粒识别的信息基础,可以准确地完成磨粒自动识别。基于发动机润滑系统磨粒分析的结果和颗粒摩擦学理论,比较准确地评估出发动机接触磨损部件的磨损状态,进而诊断或预测此类磨损故障;另外,此项分析诊断技术在发动机气路磨损故障诊断中也具有潜在的应用前景。   相似文献   
42.
模糊关联方法在齿轮箱故障诊断中的应用   总被引:2,自引:0,他引:2  
模糊关联度故障识别方法是运用灰色系统理论与模糊数学隶属函数相结合,克服了故障诊断的模式向量中参数量纲不同、数量级差异的缺点,综合了灰色系统理论和模糊理论的优点,使故障诊断识别的多参效法更加完善。但此种方法的关键是隶属函数建立的可靠性,关系到故障诊断的准确程度。  相似文献   
43.
在引入了一套磨粒形态学描述子来提取磨损颗粒的显微形态特征的基础上 ,采用人工神经网络技术 ,编制了用于磨损颗粒自动识别的 BP网络计算机模拟程序。在网络训练的过程中应用了本文引入的因子模糊化训练方法 ,使训练速度大大加快 ,以异或问题为例 ,速度可提高 5~ 1 0倍。应用此网络对磨粒测试库进行识别实验 ,识别正确率在 90 %以上 ,并且识别速度很快 ,大大优于传统的磨粒识别方法。  相似文献   
44.
Spacecraft that are launched to operate in Earth orbit are susceptible to impacts by meteoroids and pieces of orbital debris (MMOD). The effect of a MMOD particle impact on a spacecraft depends on where the impact occurs, the size, composition, and speed of the impacting object, the function of the impacted system. In order to perform a risk analysis for a particular spacecraft under a specific mission profile, it is important to know whether or not the impacting particle (or its remnants) will exit the rear of an impacted spacecraft wall. A variety of different ballistic limit equations (BLEs) have been developed for many different types of structural wall configurations. BLEs can be used to optimize the design of spacecraft wall parameters so that the resulting configuration is able to withstand the anticipated variety of on-orbit high-speed impact scenarios. While the level of effort exerted in studying the response of metallic multi-wall systems to high speed particle impact is quite substantial, the extent of the effort to study composite material and composite structural systems under similar impact conditions has been much more limited. This paper presents an overview of the activities performed to assess the resiliency of composite structures and materials under high speed projectile impact. The activities reviewed will be those that have been aimed at increasing the level of protection afforded to spacecraft operating in the MMOD environment, and more specifically, on those activities performed to mitigate the mechanical and structural effects of an MMOD impact.  相似文献   
45.
Banka  D.  Leushacke  L.  Mehrholz  D. 《Space Debris》2000,2(2):83-96
A monostatic 24-h debris observation campaign (BPE-1/2000) has been prepared and conducted using FGAN's TIRA L-Band system. Based on experiences from previous Beam-park experiments a similar largely automated data processing is applied on an extended range window of 300–2000km. More than 1500 detections are encountered, 471 of them are verified as being real objects in Low-Earth-Orbit (LEO). PROOF's observation forecasting of catalogued objects is evaluated against the observed objects, and the difficulties obtaining radar cross-sections (RCSs) and object sizes from Beam-park experiments are discussed. Sidelobe detections are identified by using background information like two-line element (TLE) sets and/or catalogued RCSs.In comparison with previous experiments, the statistics show similarities confirming the concept of Beam-park experiments for space debris observations, despite the snapshot character of 24-h experiments. The comparison with MASTER/PROOF'99 and ORDEM2000 leads to a reasonable agreement between models and observations.  相似文献   
46.
微流星体及空间碎片的高速撞击威胁着长寿命、大尺寸航天器的安全运行,导致其严重的损伤和灾难性的失效。为精确估计微流星体及空间碎片高速撞击防护屏所产生碎片云对舱壁的损伤,必须确定碎片云中三种状态材料的特性,建立了碎片云特性分析模型,分别计算了柱状弹丸撞击防护屏所产生碎片云以及碎片云中弹丸和防护屏材料三种状态物质的质量分布。通过计算分析可见,弹丸以不同速度撞击防护屏所产生碎片云三种状态物质的质量分布是不同的,速度增大,液化和气化增强,对靶件的损伤小。而在速度小于7km/s时,碎片云以固体碎片的形式存在,对靶件的损伤大。  相似文献   
47.
The release of NaK droplets has been modeled for the new version of the European Meteoroid and Space Debris Terrestrial Environment Reference model MASTER-2005. Previously published versions of the model have been revised. The parameters of the model are introduced and discussed. NaK droplets consist of eutectic sodium–potassium alloy and have been released during RORSAT reactor core ejections. They contributed to the space debris environment in the centimeter and millimeter size regime. Sixteen nuclear powered RORSATs launched between 1980 and 1988 activated a reactor core ejection system in Sufficiently High Orbits (SHO), mostly between 900 and 950 km altitude. The core ejection caused an opening of the primary coolant circuit. The liquid coolant has been released into space during these core ejections. The outflow is considered as a discrete event for each of the sixteen core ejections in total. The NaK coolant has been forming droplets up to a diameter of 5.5 cm. NaK releases are restricted to a very narrow region near 65° inclination. This paper gives the parameters of the NaK release model as it is implemented in MASTER-2005. The quantitative values of all model parameters including characteristic diameter and uniformity parameter are presented. The ratio of the characteristic droplet size to the orifice diameter is discussed. It is estimated that altogether 128 kg of NaK-78 (8 kg per RORSAT) was released on orbit. Simulation runs show that there are still 45,000 droplets with a total mass of 97 kg in orbit at the reference epoch 1 May 2005, whereas the smallest droplet has a diameter of 5 mm. Results of orbit propagation simulation runs are presented in terms of spatial density.  相似文献   
48.
The Earth orbital environment is drastically changing due to an intensification of the space activities. In particular, several projects of large constellations, proposed for the next years for communications purpose like global internet access, Internet of Things, or for Earth observations, will lead to the deployment of several thousands of new satellites at an unprecedented rate. It is a crucial challenge for space traffic management, which will deal with a great number of satellite conjunctions, potentially causing a collision with damaging consequences for the constellation itself and the space environment sustainability.In this paper, we investigate the close approach frequency and the cumulative collision probability for each referenced constellation. For this purpose, we compute the orbital evolution of satellites in different constellations during the lifecycle, from the deployment to the decommissioning, and we apply the CUBE algorithm and the Foster method to assess the collision probability with the background space debris population assuming a constant uncertainty in position. We show the variation of risk defined by the close approach frequency and the cumulative collision probability as a function of the proposed configuration. In particular, satellites of the Iridium and Kuiper constellation, but also satellite of the Telesat constellation on polar orbits are the most exposed at a collision. Moreover, the decommissioning phase contribute for a major part to the final cumulative collision probability.  相似文献   
49.
This paper presents the mission design for a CubeSat-based active debris removal approach intended for transferring sizable debris objects from low-Earth orbit to a deorbit altitude of 100 km. The mission consists of a mothership spacecraft that carries and deploys several debris-removing nanosatellites, called Deorbiter CubeSats. Each Deorbiter is designed based on the utilization of an eight-unit CubeSat form factor and commercially-available components with significant flight heritage. The mothership spacecraft delivers Deorbiter CubeSats to the vicinity of a predetermined target debris, through performing a long-range rendezvous maneuver. Through a formation flying maneuver, the mothership then performs in-situ measurements of debris shape and orbital state. Upon release from the mothership, each Deorbiter CubeSat proceeds to performing a rendezvous and attachment maneuver with a debris object. Once attached to the debris, the CubeSat performs a detumbling maneuver, by which the residual angular momentum of the CubeSat-debris system is dumped using Deorbiter’s onboard reaction wheels. After stabilizing the attitude motion of the combined Deorbiter-debris system, the CubeSat proceeds to performing a deorbiting maneuver, i.e., reducing system’s altitude so much so that the bodies disintegrate and burn up due to atmospheric drag, typically at around 100 km above the Earth surface. The attitude and orbital maneuvers that are planned for the mission are described, both for the mothership and Deorbiter CubeSat. The performance of each spacecraft during their operations is investigated, using the actual performance specifications of the onboard components. The viability of the proposed debris removal approach is discussed in light of the results.  相似文献   
50.
As the pace of human exploration and utilization of space continues to accelerate, space debris gradually becomes an inevitable problem affecting and threatening human space activities. When space debris strikes the spacecraft bulkhead, determining the impact source location timely and accurately is the foundation of the repair damage, and is also of great importance for the safety of astronauts' life. This paper analyzed the wave propagation law in thin plates, established a lightweight sensor array using PVDF (Polyvinylidene fluoride) circular thin-film sensors, and used a two-stage light-gas gun loading system to conduct hypervelocity collision localization experiments on impacting 2A12 aluminum plates to study the effects of sensor array radius and sensor size on localization results. The results show that the smaller the radius of the PVDF sensor array is, the more accurate the positioning result is under the premise of the same size of the PVDF circular film sensor array. On the premise of the same PVDF sensor array arrangement, the larger the PVDF circular membrane sensor is, the more accurate the positioning result is. ABAQUS finite element software is used to study the stress wave propagation of aluminum ball impacting aluminum plate at high speed, simulating space debris impacting spacecraft. The stress waveform obtained from the simulation is in good agreement with the experiment, which shows the accuracy of the numerical simulation method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号