首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   624篇
  免费   30篇
  国内免费   20篇
航空   281篇
航天技术   303篇
综合类   25篇
航天   65篇
  2023年   20篇
  2022年   2篇
  2021年   4篇
  2020年   16篇
  2019年   16篇
  2018年   8篇
  2017年   2篇
  2016年   2篇
  2015年   3篇
  2014年   43篇
  2013年   13篇
  2012年   14篇
  2011年   25篇
  2010年   16篇
  2009年   29篇
  2008年   59篇
  2007年   53篇
  2006年   64篇
  2005年   32篇
  2004年   14篇
  2003年   14篇
  2002年   6篇
  2001年   40篇
  2000年   8篇
  1999年   9篇
  1998年   20篇
  1997年   2篇
  1996年   14篇
  1995年   18篇
  1994年   65篇
  1993年   21篇
  1992年   2篇
  1990年   1篇
  1989年   2篇
  1984年   17篇
排序方式: 共有674条查询结果,搜索用时 46 毫秒
41.
WSO-UV project     
During last three decades, astronomers have enjoyed continuous access to the 100–300 nm ultraviolet (UV) spectral range where the resonance transitions of the most abundant atoms and ions (at temperatures between 3000 and 300 000 K) reside. This UV range is not accessible from ground-based facilities. The successful International Ultraviolet Explorer (IUE) observatory, the Russian ASTRON mission and successor instruments such as the Galaxy Evolution Explorer (GALEX) mission or the COS and STIS spectrographs on-board the Hubble Space Telescope (HST) prove the major impact of observations in the UV wavelength range in modern astronomy. Future access to space-based observatories is expected to be very limited. For the next decade, the post-HST era, the World Space Observatory – Ultraviolet (WSO–UV) will be the only 2-m class UV telescope with capabilities similar to the HST. WSO–UV will be equipped with instruments for imaging and spectroscopy and it will be a facility dedicated, full-time, to UV astronomy. In this article, we briefly outline the current status of the WSO–UV mission and the science management plan.  相似文献   
42.
为了给某型航空发动机改为地面用柴油型燃气轮机的设计提供重要的技术支持,本文借助数值计算的方法,采用FLUENT稳态压力求解器、P1辐射模型和涡耗散破碎(EDU)燃烧模型对某航空发动机燃烧室在巡航工况和最大工况下煤油与柴油两种燃料的燃烧特性进行了计算及对比研究。得到了该燃烧室使用航空煤油(RP-3)和0号柴油的热态流场、空气流量分配、温度场、出口温度分布、污染物排放及头部燃油蒸发量。研究结果表明:当该燃烧室的燃料由航空煤油改为0号柴油后,燃烧室的热态温度场分布基本一致,流量分配最大差异在0.45%之内;燃烧效率降低约4.3%和NO、Soot排放量相当;出口温度分布和总压损失差异分别在1%和4.1%之内。  相似文献   
43.
44.
Our work focuses on a comprehensive orbital phase-dependent spectroscopy of the four High Mass X-ray Binary Pulsars (HMXBPs) 4U 1538-52, GX 301-2, OAO 1657-415 and Vela X-1. We hereby report the measurements of the variation of the absorption column density and iron-line flux along with other spectral parameters over the binary orbit for the above-mentioned HMXBPs in elliptical orbits, as observed with the Rossi X-ray Timing Explorer (RXTE) and the BeppoSAX satellites. A spherically symmetric wind profile was used as a model to compare the observed column density variations. Out of the four pulsars, only in 4U 1538-52, we find the model having a reasonable corroboration with the observations, whereas in the remaining three the stellar wind seems to be clumpy and a smooth symmetric stellar wind model appears to be quite inadequate in explaining the data. Moreover, in GX 301-2, neither the presence of a disk nor a gas stream from the companion was validated. Furthermore, the spectral results obtained in the case of OAO 1657-415 and Vela X-1 were more or less similar to that of GX 301-2.  相似文献   
45.
46.
本文通过10CrMo910钢大口径厚壁管道高温模拟试验证实,焊后热处理是一个短时超高温运行过程,它使10CrMo910钢管接头组织提前老化,显著降低了接头的持久寿命。试验结果表明,传统的焊后热处理工序应当取消。  相似文献   
47.
The Athens Neutron Monitor Data Processing (ANMODAP) Center recorded an unusual Forbush decrease with a sharp enhancement of cosmic ray intensity right after the main phase of the Forbush decrease on 16 July 2005, followed by a second decrease within less than 12 h. This exceptional event is neither a ground level enhancement nor a geomagnetic effect in cosmic rays. It rather appears as the effect of a special structure of interplanetary disturbances originating from a group of coronal mass ejections (CMEs) in the 13–14 July 2005 period. The initiation of the CMEs was accompanied by type IV radio bursts and intense solar flares (SFs) on the west solar limb (AR 786); this group of energetic phenomena appears under the label of Solar Extreme Events of July 2005. We study the characteristics of these events using combined data from Earth (the ARTEMIS IV radioheliograph, the Athens Neutron Monitor (ANMODAP)), space (WIND/WAVES) and data archives. We propose an interpretation of the unusual Forbush profile in terms of a magnetic structure and a succession of interplanetary shocks interacting with the magnetosphere.  相似文献   
48.
In this paper, using the Gauss-Rotation model (GR model), we analyse the UV C IV resonance lines in the spectra of 20 Oe-stars of different spectral subtypes, in order to detect the structure of C IV region. We study the presence and behavior of absorption clouds and analyse their characteristics. From this analysis we can calculate the values of a group of physical parameters, such as the apparent rotational and radial velocities, the random velocities of the thermal motions of the ions, the Full Width at Half Maximum (FWHM), the optical depth, as well as the absorbed energy and the column density of the independent regions of matter, which produce the main and the satellite clouds of the studied spectral lines. Finally, we present the relations between these physical parameters and the spectral subtypes of the studied stars and we give our results about the structure of the C IV region in their atmosphere.  相似文献   
49.
We are developing fast photon-counter instruments to study the rapid variability of astrophysical sources by time tagging photon arrival times with unprecedented accuracy, making use of a Rubidium clock and GPS receiver. The first realization of such optical photon-counters, dubbed AquEYE (the Asiago Quantum Eye), was mounted in 2008 at the 182 cm Copernicus Observatory in Asiago. AquEYE observed the Crab pulsar several times and collected data of extraordinary quality that allowed us to perform accurate optical timing of the Crab pulsar and to study the pulse shape stability on a timescale from days to years with an excellent definition. Our results reinforce the evidence for decadal stability of the inclination angle between the spin and magnetic axis of the Crab pulsar. Future realizations of our instrument will make use of the Galileo Global Navigation Satellite System (GNSS) time signal.  相似文献   
50.
Electrons with near-relativistic (E≳30 keV, NrR) and relativistic (E≳0.3 MeV) energies are often observed as discrete events in the inner heliosphere following solar transient activity. Several acceleration mechanisms have been proposed for the production of those electrons. One candidate is acceleration at MHD shocks driven by coronal mass ejections (CMEs) with speeds ≳1000 km s−1. Many NrR electron events are temporally associated only with flares while others are associated with flares as well as with CMEs or with radio type II shock waves. Since CME onsets and associated flares are roughly simultaneous, distinguishing the sources of electron events is a serious challenge. On a phenomenological basis two classes of solar electron events were known several decades ago, but recent observations have presented a more complex picture. We review early and recent observational results to deduce different electron event classes and their viable acceleration mechanisms, defined broadly as shocks versus flares. The NrR and relativistic electrons are treated separately. Topics covered are: solar electron injection delays from flare impulsive phases; comparisons of electron intensities and spectra with flares, CMEs and accompanying solar energetic proton (SEP) events; multiple spacecraft observations; two-phase electron events; coronal flares; shock-associated (SA) events; electron spectral invariance; and solar electron intensity size distributions. This evidence suggests that CME-driven shocks are statistically the dominant acceleration mechanism of relativistic events, but most NrR electron events result from flares. Determining the solar origin of a given NrR or relativistic electron event remains a difficult proposition, and suggestions for future work are given.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号