首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   240篇
  免费   35篇
  国内免费   9篇
航空   76篇
航天技术   179篇
综合类   8篇
航天   21篇
  2024年   1篇
  2023年   8篇
  2022年   1篇
  2021年   2篇
  2020年   10篇
  2019年   5篇
  2018年   9篇
  2017年   4篇
  2016年   5篇
  2015年   5篇
  2014年   16篇
  2013年   7篇
  2012年   9篇
  2011年   19篇
  2010年   7篇
  2009年   10篇
  2008年   22篇
  2007年   10篇
  2006年   37篇
  2005年   6篇
  2004年   35篇
  2003年   4篇
  2002年   1篇
  2001年   1篇
  1999年   3篇
  1998年   2篇
  1997年   3篇
  1996年   5篇
  1995年   3篇
  1994年   8篇
  1993年   1篇
  1992年   4篇
  1988年   1篇
  1987年   1篇
  1984年   19篇
排序方式: 共有284条查询结果,搜索用时 15 毫秒
221.
利用X射线衍射仪,采用全谱拟含的方法,测定三种不同碳材料的点阵常数、石墨化度及微晶参数,测得三种碳材料(每个样品重复5次试验)六方晶系的a的标准偏差小于2.0×10~(-3),c的标准偏差小于1.4×10~(-3),石墨化度(g)的标准偏差小于1.5,微晶参数(L_(c002))的标准偏差小于0.5,是一种有效的测试碳材料晶体参数的方法.  相似文献   
222.
In order to shorten the data update period and further improve the accuracy, a pre-correction X-ray pulsar navigation algorithm based on asynchronous overlapping observation method is proposed. The asynchronous overlapping observation method partially overlaps the two adjacent observation periods, so that the data update period depends on the minimum pulsar observation period rather than the maximum like the other algorithms. The number of sampling points is also reduced to 2, which will effectively reduce the calculation burden. The proposed pre-correction extended Kalman filter uses observation data of adjacent sampling points to achieve a two-fold correction and makes up for the problem of insufficient observations on some sampling points caused by the observation method. Finally, simulations show that the proposed algorithm reduces the position and velocity errors by 21.55% and 19.13% compared to the EKF based on asynchronous observation method when using three detectors to observe the corresponding pulsars simultaneously. At the same time, the running time of one data update calculation is only 6.6% more than that of the EKF algorithm based on synchronous observation method.  相似文献   
223.
《中国航空学报》2020,33(3):771-791
Composite materials are increasingly used in the aerospace industry. To fully realise the weight saving potential along with superior mechanical properties that composites offer in safety critical applications, reliable Non-Destructive Testing (NDT) methods are required to prevent catastrophic failures. This paper will review the state of the art in the field and point to highlight the success and challenges that different NDT methods are faced to evaluate the integrity of critical aerospace composites. The focus will be on advanced certificated NDT methods for damage detection and characterization in composite laminates for use in the aircraft primary and secondary structures.  相似文献   
224.
X-Rays From Mars     
X-rays from Mars were first detected in July 2001 with the satellite Chandra. The main source of this radiation was fluorescent scattering of solar X-rays in its upper atmosphere. In addition, the presence of an extended X-ray halo was indicated, probably resulting from charge exchange interactions between highly charged heavy ions in the solar wind and neutrals in the Martian exosphere. The statistical significance of the X-ray halo, however, was very low. In November 2003, Mars was observed again in X-rays, this time with the satellite XMM-Newton. This observation, characterized by a considerably higher sensitivity, confirmed the presence of the X-ray halo and proved that charge exchange is indeed the origin of the emission. This was the first definite detection of charge exchange induced X-ray emission from the exosphere of another planet. Previously, this kind of emission had been detected from comets (which are largely exospheres) and from the terrestrial exosphere. Because charge exchange interactions between atmospheric constituents and solar wind ions are considered as an important nonthermal escape mechanism, probably responsible for a significant loss of the Martian atmosphere, X-ray observations may lead to a better understanding of the present state of the Martian atmosphere and its evolution. X-ray images of the Martian exosphere in specific emission lines exhibited a highly anisotropic morphology, varying with individual ions and ionization states. With its capability to trace the X-ray emission out to at least 8 Mars radii, XMM-Newton can explore exospheric regions far beyond those that have been observationally explored to date. Thus, X-ray observations provide a novel method for studying processes in the Martian exosphere on a global scale.  相似文献   
225.
Selected results from the Rossi X-ray Timing Explorer All-Sky Monitor are presented to illustrate the phenomenology of the light curves. The sensitivity to periodic intensity variations is indicated by the folded light curve of AM Her. The gray line between transient and persistent sources is emphasized. Light curves of a range of systems comprising black holes or neutron stars and low and high mass companion stars show that the behavior of these systems is often, but not always, characteristic.  相似文献   
226.
We performed 2D and full 3D magnetohydrodynamic simulations of disk accretion to a rotating star with an aligned or misaligned dipole magnetic field. We investigated the rotational equilibrium state and derived from simulations the ratio between two main frequencies: the spin frequency of the star and the orbital frequency at the inner radius of the disk. In 3D simulations we observed different features related to the non-axisymmetry of the magnetospheric flow. These features may be responsible for high-frequency quasi-periodic oscillations (QPOs). Variability at much lower frequencies may be connected with restructuring of the magnetic flux threading the inner regions of the disk. Such variability is specifically strong at the propeller stage of evolution.  相似文献   
227.
The X-ray background intensity around galaxies and rich clusters of galaxies is investigated in three energy bands using the ROSAT All-Sky Survey maps. It is found that an amplitude of the XRB enhancements surrounding the Abell clusters and high density areas in the Lick galaxy counts depends on photon energy. Excess flux generated in the surrounding of the galaxy concentrations is consistent with the thermal emission by hot gas postulated by hydrodynamic simulations.  相似文献   
228.
Millisecond X-ray time variability studies of accreting low-magnetic-field neutron stars and stellar-mass black holes in X-ray binaries probe the motion of matter in regions of strong gravity. In these regions, general relativity (GR) is no longer a small correction to the classical laws of motion, but instead dominates the dynamics: we are studying motion in strongly curved spacetime. Such millisecond X-ray variability studies can therefore provide unique tests of GR in the strong-field regime. The same studies also constrain neutron-star parameters such as stellar mass and radius, and thereby the equation of state (EOS) of ultradense matter. I briefly review the status, and discuss the prospects for mapping out space-time near accreting stellar-mass compact objects, and measuring the EOS of dense matter, through millisecond timing, particularly with an eye towards future missions. The overwhelming consideration for timing sensitivity is collecting area: contrary to most applications, the signal-to-noise ratio for the aperiodic timing phenomena produced by accretion flows increases proportionally with count rate rather than as the square root of it. A 10 times larger instrument turns 1σ effects into 10σ effects (or does as well in 1% of the time). With the Rossi X-ray Timing Explorer (RXTE), using 0.6 m2 collecting area, we have found several timing diagnostics from the accretion flow in the strong field region around neutron stars and black holes, as well as signals from neutron star surface hot spots. Combined work between RXTE and the new sensitive X-ray spectrographs onboard Chandra and XMM can already begin to clinch the geometry and physical mechanisms underlying these signals. Future instruments, larger in area by an order of magnitude and in some cases with enhanced spectral capabilities, are expected to turn these diagnostics of GR into true tests of GR. They are also expected to put strong constraints on neutron-star structure, and thereby on the EOS of supranuclear density matter.  相似文献   
229.
X-ray telescopes have been providing high sensitivity X-ray observations in numerous missions. For X-ray telescopes in the future, one of the key technologies is to expand the energy band beyond 10 keV. We designed depth-graded multilayer, so-called supermirrors, for a hard X-ray telescope in the energy band up to 40 keV using lightweight thin-foil optics. They were successfully flown in a balloon flight and obtained a hard X-ray image of Cyg X-1 in the 20–40 keV band. Now supermirrors are promising to realize a hard X-ray telescope. We have estimated the performance of a hard X-ray telescope using a platinum–carbon supermirror for future satellite missions, such as NeXT (Japan) and XEUS (Europe). According to calculations, they will have a significant effective area up to 80 keV, and their effective areas will be more than 280 cm2 even at 60 keV. Limiting sensitivity will be down to 1.7 × 10−13 erg cm−2 s−1 in the 10–80 keV band at a 100 ks observation. In this paper, we present the results of the balloon experiment with the first supermirror flown and projected effective areas of hard X-ray telescopes and action items for future missions.  相似文献   
230.
The prime scientific objectives of the Rossi X-ray Timing Explorer (RXTE) were the study of astrophysical compact objects: black holes (galactic and extragalactic), many types of neutron stars, and accreting white dwarfs. RXTE was successful in achieving its original observing objectives of large area and high time resolution observations with broadband (2–200 keV) spectra, scheduled flexibly enough to enable observations of targets of opportunity on any timescale greater than a few hours. These capabilities enabled qualitatively new discoveries about dynamical timescale phenomena related to neutron stars and black holes, phenomena which probe basic physics in the most extreme environments of gravity, density, and magnetic fields. RXTE has extended its lifetime by applying the proportional counter area selectively and maintains schedule flexibility by making use of the distribution of targets around the sky. Proposed future observations emphasize opportunity to discover and study additional millisecond pulsars, pursue the high frequency quasi-periodic oscillations in black hole transients, and connect high frequency phenomena with longer-term characteristics. RXTE will continue to strongly support, for both galactic and extragalactic targets, combining RXTE observations with other wavelengths (from IR to TeV) or with other capabilities, such as high spectral resolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号