首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   367篇
  免费   8篇
  国内免费   49篇
航空   134篇
航天技术   251篇
综合类   23篇
航天   16篇
  2023年   12篇
  2022年   4篇
  2021年   15篇
  2020年   14篇
  2019年   17篇
  2018年   19篇
  2017年   3篇
  2016年   5篇
  2015年   8篇
  2014年   20篇
  2013年   15篇
  2012年   20篇
  2011年   23篇
  2010年   17篇
  2009年   33篇
  2008年   28篇
  2007年   14篇
  2006年   16篇
  2005年   16篇
  2004年   3篇
  2003年   19篇
  2002年   7篇
  2001年   8篇
  2000年   6篇
  1999年   8篇
  1998年   10篇
  1997年   14篇
  1996年   12篇
  1995年   8篇
  1994年   12篇
  1993年   6篇
  1992年   3篇
  1991年   2篇
  1990年   3篇
  1988年   1篇
  1986年   2篇
  1984年   1篇
排序方式: 共有424条查询结果,搜索用时 15 毫秒
191.
介绍了一种斜边占π/5的等腰梯形脉宽调制波,从理论上证明了采用这种PWM(PulseWidth Modulation)波控制的变频器,能消除输出电压的5次谐波分量,使输出电压谐波分量小,电流波形好,系统运行时转矩脉动小,可靠、平稳、噪声低.已将这种控制技术应用于某种列车风扇异步电机的变频调速,实验结果与理论分析相吻合.  相似文献   
192.
Impulsively starting flow, by a sudden attainment of a large angle of attack, has been well studied for incompressible and supersonic flows, but less studied for subsonic flow. Recently, a preliminary numerical study for subsonic starting flow at a high angle of attack displays an advance of stall around a Mach number of 0.5, when compared to other Mach numbers. To see what happens in this special case, we conduct here in this paper a further study for this case, to display and analyze the full flow structures. We find that for a Mach number around 0.5, a local supersonic flow region repeatedly splits and merges, and a pair of left-going and right-going unsteady shock waves are embedded inside the leading edge vortex once it is sufficiently grown up and detached from the leading edge. The flow evolution during the formation of shock waves is displayed in detail. The reason for the formation of these shock waves is explained here using the Laval nozzle flow theory. The existence of this shock pair inside the vortex, for a Mach number only close to 0.5, may help the growing of the trailing edge vortex responsible for the advance of stall observed previously.  相似文献   
193.
Ionospheric variability impacts operational performances of a variety of technological systems, such as HF communication, Global Positioning System (GPS) navigation, and radar surveillance. The ionosphere is not only perturbed by geomagnetic inputs but is also influenced by atmospheric tides and other wave disturbances propagating from the troposphere to high altitudes. Atmospheric Gravity Waves (AGWs) excited by meteorological sources are one of the largest sources of mesoscale variability in the ionosphere. In this paper, Total Electron Content (TEC) data from networks of GPS receivers in the United States are analyzed to investigate AGWs in the ionosphere generated by convective thunderstorms. Two case studies of convectively generated gravity waves are presented. On April 4, 2014 two distinct large convective systems in Texas and Arkansas generated two sets of concentric AGWs that were observed in the ionosphere as Traveling Ionospheric Disturbances (TIDs). The period of the observed TIDs was 20.8 min, the horizontal wavelength was 182.4 km, and the horizontal phase speed was 146.4 m/s. The second case study shows TIDs generated from an extended squall line on December 23, 2015 stretching from the Gulf of Mexico to the Great Lakes in North America. Unlike the concentric wave features seen in the first case study, the extended squall line generated TIDs, which exhibited almost plane-parallel phase fronts. The TID period was 20.1 min, its horizontal wavelength was 209.6 km, and the horizontal phase speed was 180.1 m/s. The AGWs generated by both of these meteorological events have large vertical wavelength (>100 km), which are larger than the F2 layer thickness, thus allowing them to be discernible in the TEC dataset.  相似文献   
194.
周航  金志光 《航空学报》2020,41(12):124035-124035
传统的密切轴对称理论被广泛应用于均匀来流下的三维密切曲面激波反设计,为解决非均匀来流条件下的三维曲面激波反问题,提出了一种微元密切轴对称流场(MOA)求解方法。该方法沿激波面的周向和流向构建一系列微元密切面,在每个微元面内进行三维向二维流动的等效转换,从而突破了传统密切方法中不能有横向波后流动的限制。利用该方法编写设计程序,分别基于带攻角来流条件和外锥型流来流条件重构了标准内锥曲面激波,并与数值仿真结果进行了比较。结果表明,非均匀来流下激波曲面的三维形状均与预设形状完全一致,实现了非均匀来流下曲面激波形状可控。MOA方法在吸气式高超声速推进领域中前体/进气道一体化设计方面有重要应用前景。  相似文献   
195.
The dynamics of linear and nonlinear electrostatic shock excitations is studied in homogeneous, unmagnetized, unbounded and dissipative quantum plasma consisting of electrons and ions. The dissipation in the system is taken into account by incorporating the ion kinematic viscosity. The system is modelled using the quantum hydrodynamic equations in which the electrons are significantly affected by the quantum forces, viz., the quantum statistical pressure, the quantum Bohm potential and electron exchange-correlations due to electron spin. In the weakly nonlinear limit, using reductive perturbation method deformed Korteweg-de Vries Burgers’s (KdVB) equation, which elegantly combines the effects of nonlinearity, dispersion and dissipation is derived. It is found that the present model predicts the existence of both nonlinear oscillatory and monotonic shock structures. The temporal evolution, stability and phase-space dynamics of nonlinear ion acoustic shocks are investigated numerically to elucidate the effects of quantum diffraction, electron exchange correlation and ion kinematic viscosity.  相似文献   
196.
The typical behavior of unsteady flow and force evolution in a number of applications, such as aero-elastics, gust-wing interaction, flapping flight and flight maneuvering, can be understood using the starting flow model. Starting flow model is obtained either by setting rapidly an angle of attack for a wing moving at constant speed, or by accelerating a wing to a constant speed while gaining an angle of attack. In the limiting case of impulsively starting flow, the wing is assumed to gain suddenly an angle of attack in an initially uniform flow. Theories have been developed for impulsively starting flow at small angle of attack long before and at large angle of attack only recently, especially for incompressible and supersonic flow. This paper intends to provide a state-of-art overview of the typical flow phenomena, force evolution characteristics and developed theories for impulsively starting flow at any angle of attack and for both lower speed flow (vortex dominated) and high speed flow (compressible wave dominated). This review also provides some new topics that deserve further studies.  相似文献   
197.
198.
The study is based on the data of the rapid-run ionosonde at the Sodankylä Geophysical Observatory at auroral latitude (L?=?5.25) which routinely performs one-minute sounding since 2007. This dataset allows a unique opportunity for investigating possible effects of ultra-low frequency (ULF, 1–7?mHz) waves in the auroral ionosphere. Suitable observations were made during moderately disturbed geomagnetic conditions typically at recovery of the geomagnetic storms caused by solar wind high-speed streams, in the daytime between 9 and 16 MLT. The ionospheric oscillations corresponding to Pc5 geomagnetic pulsations were found in variations of the virtual height of the F layer and the power of ionosonde reflections from E and F layers. The later are most probably caused by modulation of electron precipitation, which is also manifested in weak (about 0.01–0.06?dB) variations of cosmic noise absorption. The most important and novel result is that the pulsations of power of reflection from E and F layers typically has a spectral maximum at nearly half the periodicity of the Pc5 geomagnetic pulsations, whereas such spectral peak is negligible in the geomagnetic pulsations.  相似文献   
199.
200.
This review article briefly brings out the historical development of atmospheric sodium (Na) measurements over India and the importance of coordinated measurements with multiple techniques to address physical processes in the Earth's upper atmosphere. These measurements were initiated in the early 1970s by observing Na airglow emission intensities with broad band airglow photometer from Mt. Abu, a low-latitude hill station in India. Considerable amount of night-to-night variations in nocturnal emission intensities of the Na airglow were observed. Later, investigations regarding the dependence with the magnetic activities from the equatorial and low latitudes were carried out and double-humped structures in the nocturnal variation of intensities were reported. With the advent of Na lidar at Gadanki around 2005, the measurements of atmospheric neutral Na atom concentration became possible and more frequent occurrences of sporadic Na layers over the magnetic low latitude station compared to other latitudes were detected indicating the role played by electrodynamics. Later, a possible relationship between E-region field aligned plasma irregularities and the concentration of neutral Na atoms was investigated using coordinated measurements of VHF radar and Na lidar. Further, simultaneous measurements with Na lidar and a narrow band airglow photometer with narrow field of view brought out the importance of coordinated observation wherein the characterization of gravity waves could be carried out and also revealed the importance of collisional quenching due to ambient molecules in the Na airglow emission processes. In addition, combining the ground based measurements of Na lidar and meteor wind radar along with satellite measurements made possible to hypothesize the over-turning Kelvin–Helmholtz billow in the Na layer manifests “C-type” or inverted lambda shape structures in the height-time-concentration map of neutral Na atoms. This review paper presents a synoptic view mostly based on the previously reported observations of Na airglow emission, Na lidar and coordinated Na airglow and Na lidar observations from the Indian sector and highlights the importance of simultaneous measurements of mesospheric Na and its emissions along with satellite-borne measurements to address interesting geophysical processes in the Earth's upper atmosphere.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号