首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   194篇
  免费   10篇
  国内免费   7篇
航空   16篇
航天技术   188篇
综合类   1篇
航天   6篇
  2023年   4篇
  2022年   3篇
  2021年   8篇
  2020年   9篇
  2019年   11篇
  2018年   13篇
  2015年   5篇
  2014年   23篇
  2013年   19篇
  2012年   13篇
  2011年   9篇
  2010年   17篇
  2009年   22篇
  2008年   18篇
  2007年   1篇
  2006年   5篇
  2005年   5篇
  2003年   8篇
  2002年   1篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
排序方式: 共有211条查询结果,搜索用时 380 毫秒
171.
Hourly values of the F2-layer peak density, NmF2, measured by 62 ionosonde stations from 1957 to 2008 at middle geomagnetic latitudes of the northern and southern hemispheres are used in a statistical study of the F2-region winter anomaly. We analyze a maximum value, R, of the winter/summer geomagnetically quiet daytime NmF2 ratio over each ionosonde for approximately the same winter and summer solar activity conditions. The conditional probability of an occurrence of R in an interval of R, the most frequent value of R, the mean expected value of R, and the conditional probability to observe the F2-region winter anomaly are calculated and studied for low, moderate, and high solar activity conditions. It is found that northern hemisphere stations show significant cross-correlations of winter anomaly statistics with geomagnetic latitude for moderate and high solar activities.  相似文献   
172.
Observations of ionospheric vertical total electron content (vTEC) from European ground-based Global Navigation Satellite Systems (GNSS) receivers during the period January 2008–January 2010 are used to investigate, for the first time, vTEC sensitivity to weak geomagnetic disturbances under extreme solar minimum conditions. This study shows a significant number of events for the period in question, all of which exhibited some form of exceptionally large values of vTEC during small-magnitude geomagnetic disturbances. To illustrate our point on the importance of vTEC enhancements during the extreme solar minimum and its relevance for the current GNSS and future Galileo applications, we present in this paper the results associated with two significant events that both occurred in equinoctial months. The 10–12 October 2009 event of anomalous TEC enhancement at two distant mid-latitude locations HERS (0.3 E; 50.9 N) and NICO (33.4 E, 35.1 N) is discussed in the context of strong vTEC variations during the well established ionospheric storm on 11 October 2008. We conclude with a short summary of the new findings and their consequences on ionospheric monitoring and modelling for operational communication and navigation systems.  相似文献   
173.
Total electron content (TEC) derived from ionosonde data recorded at the station of Korhogo (Lat = 9.33°N, Long = 5.43°W, Dip = 0.67°S) are compared to the International Reference Ionosphere (IRI) model predicted TEC for high (1999) and low (1994) solar activity conditions. The results show that the model represents the diurnal variation of the TEC as well as a solar activity and seasonal dependence. This variation is closer to that of the ionosonde-inferred TEC at high solar activity. However, at low solar activity the IRI overestimates the ionosonde-inferred TEC. The relative deviation ΔTEC is more prominent in the equinoctial seasons during nighttime hours where it is as high as 70%. At daytime hours, the relative deviation is estimated to 0–30%.  相似文献   
174.
针对多层电离层,采用反抛物层作为连接层来描述电离层之间区域的电子密度分布.以电子密度和其相对于高度的一阶偏导数连续为依据,拟合出连接层的临界频率、半厚度和底高等电离层参数.将电离层的准抛物模型和连接层的反抛物模型中计算出来的等离子频率代入Appleton-Hartree公式和Snell定理,结合射线的几何结构完成多层电离层中的射线追踪,同时计算群路径、相路径和传输距离这3种重要的路径参数.分析当给定频率时,路径参数与入射角之间的关系,群路径、相路径与传输距离之间的关系,频率对路径参数之间变化关系的影响;同时分析了给定入射角时,路径参数与射线工作频率之间关系和入射角对于路径参数之间变化关系的影响.  相似文献   
175.
    
对2008-2010年覆盖中国空间的DEMETER卫星电场探测数据进行分析,共识别出328例磁层线辐射(MLR)事件。根据已有MLR事件的频谱特征,研究了中国空间的MLR事件的特征及其可能的原因。对所有MLR事件进行统计分析,结果表明这些事件白昼的出现率高于夜晚,秋冬季的出现率高于春夏季;与地磁活动水平无明显关联,主要出现在中国中低纬度地区空间;频率间隔主要分布在55~95 Hz,频率漂移速率大都在0~0.4 Hz/s,并且频谱最高强度与地理纬度无明确关联。中国空间MLR事件的特征与中国空间所观测到的电力线谐波辐射(PLHR)事件的特征相似,与国外已发现的MLR事件的特征有所不同。  相似文献   
176.
SIRGAS (Geocentric Reference Frame for the Americas) is an international enterprise of the geodetic community that aims to realize the Terrestrial Reference Frame in the America’s countries. In order to fulfill this commitment, SIRGAS manages a network of continuously operational GNSS receivers totalling around one hundred sites in the Caribbean, Central, and South American region. Although the network was not planed for ionospheric studies, its potential to be used for such a purpose was recently recognized and SIRGAS started a pilot experiment devoted to establish a regular service for computing and releasing regional vertical TEC (vTEC) maps based on GNSS data. Since July, 2005, the GESA (Geodesia Espacial y Aeronomía) laboratory belonging to the Facultad de Ciencias Astronómicas y Geofísicas of the Universidad Nacional de La Plata computes hourly maps of vertical Total Electron Content (vTEC) in the framework of the SIRGAS pilot experiment. These maps exploit all the GNSS data available in the South American region and are computed with the LPIM (La Plata Ionospheric Model). LPIM implements a de-biasing procedure that improves data calibration in relation to other procedures commonly used for such purposes. After calibration, slant TEC measurements are converted to vertical and mapped using local-time and modip latitude. The use of modip latitude smoothed the spatial variability of vTEC, especially in the South American low latitude region and hence allows for a better vTEC interpolation. This contribution summarizes the results obtained by GESA in the framework of the SIRGAS pilot experiment.  相似文献   
177.
This paper presents the impact of diurnal, seasonal and solar activity effects on the variability of ionospheric foF2 in the African equatorial latitude. Three African ionospheric stations; Dakar (14.8°N, 17.4°W, dip: 11.4°N), Ouagadougou (12.4°N, 1.5°W, dip: 2.8°N) and Djibouti (11.5°N, 42.8°E, dip: 7.2°N) were considered for the investigation. The overall aim is to provide African inputs that will be of assistance at improving existing forecasting models. The diurnal analysis revealed that the ionospheric critical frequency (foF2) is more susceptible to variability during the night-time than the day-time, with two peaks in the range; 18–38% during post-sunset hours and 35–55% during post-midnight hours. The seasonal and solar activity analyses showed a post-sunset September Equinox maximum and June Solstice maximum of foF2 variability in all the stations for all seasons. At all the stations, foF2 variability was high for low solar activity year. Overall, we concluded that equatorial foF2 variability increases with decreasing solar activity during night-time.  相似文献   
178.
In this paper, we analyze VLF signals received at Busan to study the the D-region changes linked with the solar eclipse event of 22 July 2009 for very short (∼390 km) transmitter–receiver great circle path (TRGCP) during local noon time 00:36–03:13 UT (09:36–12:13 KST). The eclipse crossed south of Busan with a maximum obscuration of ∼84%. Observations clearly show a reduction of ∼6.2 dB in the VLF signal strength at the time of maximum solar obscuration (84% at 01:53 UT) as compared to those observed on the control days. Estimated values of change in Wait ionospheric parameters: reflection height (h′) in km and inverse scale height parameter (β) in km−1 from Long Wave Propagation Capability (LWPC) model during the maximum eclipse phase as compared to unperturbed ionosphere are 7 km and 0.055 km−1, respectively. Moreover, the D-region electron density estimated from model computation shows 95% depletion in electron density at the height of ∼71 km. The reflection height is found to increase by ∼7 km in the D-region during the eclipse as compared to those on the control days, implying a depletion in the Lyman-α flux by a factor of ∼7. The present observations are discussed in the light of current understanding on the solar eclipse induced D-region dynamics.  相似文献   
179.
The Earth’s magnetosphere response to interplanetary medium conditions on January 21–22, 2005 and on December 14–15, 2006 has been studied. The analysis of solar wind parameters measured by ACE spacecraft, of geomagnetic indices variations, of geomagnetic field measured by GOES 11, 12 satellites, and of energetic particle fluxes measured by POES 15, 16, 17 satellites was performed together with magnetospheric modeling based in terms of A2000 paraboloid model. We found the similar dynamics of three particle populations (trapped, quasi-trapped, and precipitating) during storms of different intensities developed under different external conditions: the maximal values of particle fluxes and the latitudinal positions of the isotropic boundaries were approximately the same. The main sources caused RC build-up have been determined for both magnetic storms. Global magnetospheric convection controlled by IMF and substorm activity driven magnetic storm on December 14–15, 2006. Extreme solar wind pressure pulse was mainly responsible for RC particle injection and unusual January 21, 2005 magnetic storm development under northward IMF during the main phase.  相似文献   
180.
This paper presents an investigation into the variability and predictability of the maximum height of the ionospheric F2 layer, hmF2 over the South African region. Data from three South African stations, namely Madimbo (22.4°S, 26.5°E, dip angle: −61.47°), Grahamstown (33.3°S, 26.5°E, dip angle: −64.08°) and Louisvale (28.5°S, 21.2°E, dip angle: −65.44°) were used in this study. The results indicate that hmF2 shows a larger variability around midnight than during the daytime for all seasons. Monthly median hmF2 values were used in all cases and were compared with predictions from the IRI-2007 model, using the URSI (Union Radio-Scientifique Internationale) coefficient option. The analysis covers the diurnal and seasonal hourly hmF2 values for the selected months and time sectors e.g. January, July, April and October for 2003 and 2005. The time ranges between (03h00–23h00 UT; LT = UT + 2h) representing the local sunrise, midday, sunset and midnight hours. The time covers sunrise, midday, sunrise, and midnight hours (03–06h00 UT, 07–11h00 UT, sunrise 16–18h00 UT and 22–23h00 UT; LT = UT + 2h). The dependence of the results on solar activity levels was also investigated. The IRI-2007 predictions follow fairly well the diurnal and seasonal variation patterns of the observed hmF2 values at all the stations. However, the IRI-2007 model overestimates and underestimates the hmF2 value during different months for all the solar activity periods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号