首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   194篇
  免费   10篇
  国内免费   7篇
航空   16篇
航天技术   188篇
综合类   1篇
航天   6篇
  2023年   4篇
  2022年   3篇
  2021年   8篇
  2020年   9篇
  2019年   11篇
  2018年   13篇
  2015年   5篇
  2014年   23篇
  2013年   19篇
  2012年   13篇
  2011年   9篇
  2010年   17篇
  2009年   22篇
  2008年   18篇
  2007年   1篇
  2006年   5篇
  2005年   5篇
  2003年   8篇
  2002年   1篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
排序方式: 共有211条查询结果,搜索用时 78 毫秒
141.
局域增强系统级联双频平滑技术研究(英文)   总被引:1,自引:1,他引:1  
针对电离层误差时间梯度和空间梯度对局域增强系统的不利影响,提出使用级联双频平滤波方法解决此问题。级联双频平滤波先使用一个双频平滑滤波器精确估计电离层误差,利用得到的估计值修正码伪距观测量中的电离层误差,再使用一个双频平滑滤波器削弱噪声。这样,电离层误差被完全从平滑过程中移出,由L2码观测量引入的附加的噪声也被压制。基于中国民航新航行系统实验室的局域增强系统测试平台所采集的数据对级联双频平滤波的有效性和基于级联双频平滤波的局域增强系统的精度进行了分析。结果表明级联双频平滤波技术可以同时消除电离层误差时间梯度和空间梯度导致的平滑滤波残差和差分校正残差,并具有较低的滤波噪声。  相似文献   
142.
The representation of the topside ionosphere (the region above the F2 peak) is critical because of the limited experimental data available. Over the years, a wide range of models have been developed in an effort to represent the behaviour and the shape of the electron density (Ne) profile of the topside ionosphere. Various studies have been centred around calculating the vertical scale height (VSH) and have included (a) obtaining VSH from Global Positioning System (GPS) derived total electron content (TEC), (b) calculating the VSH from ground-based ionosonde measurements, (c) using topside sounder vertical Ne profiles to obtain the VSH. One or a combination of the topside profilers (Chapman function, exponential function, sech-squared (Epstein) function, and/or parabolic function) is then used to reconstruct the topside Ne profile. The different approaches and the modelling techniques are discussed with a view to identifying the most adequate approach to apply to the South African region’s topside modelling efforts. The IRI-2001 topside model is evaluated based on how well it reproduces measured topside profiles over the South African region. This study is a first step in the process of developing a South African topside ionosphere model.  相似文献   
143.
It is shown in this paper for the first time that the intensity of the daytime thermospheric O(1D) 630.0 nm airglow as measured by the ground-based dayglow photometer over Trivandrum (8.5°N; 77°E; dip lat. 0.5°N), a geomagnetic dip equatorial station, exhibit a direct correlation with the electron density at 180 km. This altitude is about ∼40 km lower than the believed centroid of the O(1D) 630.0 nm dayglow emission i.e. 220 km. This observation is contrary to the understanding of the behavior of O(1D) 630.0 nm dayglow over equatorial/low latitudes. Over these latitudes, the variations of the measured intensity of O(1D) 630.0 nm dayglow are known to be associated with the changes in the electron density at altitudes around 220 km, the centroid of this emission. In this context, the present results indicating the lowering of the peak altitude of O(1D) 630.0 nm emission from ∼220 to ∼180 km over the dip equator is new. Recent results on solar XUV flux indicate that this could be an important parameter that controls the O(1D) 630.0 nm dayglow excitation rates through modulations in the neutral and ionic composition in lower thermosphere-ionosphere region. However, the lowering of the centroid of O(1D) 630.0 nm emission, as shown in this study, has been ascribed primarily to the fountain effect associated with the equatorial ionization anomaly.  相似文献   
144.
A study on the variability of the equatorial ionospheric electron density was carried out at fixed heights below the F2 peak using one month data for each of high and low solar activity periods. The data used for this study were obtained from ionograms recorded at Ilorin, Nigeria, and the study covers height range from 100 km to the peak of the F2 layer for the daytime hours and height range from 200 km to the peak of the F2 layer for the nighttime hours. The results showed that the deviation of the electron density variation from simple Chapman variation begins from an altitude of about 200 km for the two months investigated. Daytime minimum variability of between 2.7% and 9.0% was observed at the height range of about 160 and 200 km during low solar activity (January 2006) and between 3.7% and 7.8% at the height range of 210 and 260 km during high solar activity (January 2002). The nighttime maximum variability was observed at the height range of 210 and 240 km at low solar activity and at the height range of 200 and 240 km at high solar activity. A validation of IRI-2007 model electron density profile’s prediction was also carried out. The results showed that B0 option gives a better prediction around the noontime.  相似文献   
145.
To improve the accuracy of the real time topside electron density profiles given by the Digisonde software a new model-assisted technique is used. This technique uses the Topside Sounder Model (TSM), which provides the plasma scale height (Hs), O+–H+ transition height (HT), and their ratio Rt = Hs/HT, derived from topside sounder data of Alouette and ISIS satellites. The Topside Sounder Model Profiler (TSMP) incorporates TSM and uses the model quantities as anchor points in construction of topside density (Ne) profiles. For any particular location, TSMP calculates topside Ne profiles by specifying the values of foF2 and hmF2. In the present version, TSMP takes the F2 peak characteristics – foF2, hmF2, and the scale height at hmF2 – from the Digisonde measurements. The paper shows results for the Digisonde stations Athens and Juliusruh. It is found that the topside scale height used in Digisonde reconstruction is less than that extracted from topside sounder profiles. Rough comparison of their bulk distributions showed that they differ by an average factor of 1.25 for locations of Athens and Juliusruh. When the Digisonde scale heights are adjusted by this factor, the reconstructed topside profiles are close to those provided by TSM. Compared with CHAMP reconstruction profiles in two cases, TSMP/Digisonde profiles show lower density between 400 and 2000 km.  相似文献   
146.
This study examines the response of the African equatorial ionospheric foF2 to different levels of geomagnetic storms, using the foF2 hourly data for the year 1989 from Ouagadougou (12.4°N, 1.5°W, dip: 2.8°N). The study also compares the observed data for the selected storm periods with the latest IRI model (IRI-2007). The foF2 values (both observed and predicted) show typical features of daytime peak and post-midnight minimum peak. The response of the ionospheric foF2 over Ouagadougou to storms events, during the night-time and post-midnight hours indicates negative responses of the ionospheric foF2, while that of the daytime hours indicates positive responses. For the investigation on the variability of the observed foF2 with respect to IRI-2007 model, with the exception of the analysis of the 20–22, October, 1989 data, where a midday peak was also observed on the first day, this study reveals two characteristic daily foF2 variability peaks: post-midnight and evening peaks. In addition, for all the geomagnetic storms considered, the URSI and CCIR coefficients of the IRI-2007 model show reasonable correspondence with each other, except for some few discrepancies. For instance, the event of 28–30 August, 1989 shows comparatively higher variability for the URSI coefficient, and at the foF2 peak values, the event of 20–22 October, 1989 shows that the CCIR coefficient is more susceptible to foF2 variability than the URSI coefficient. This study is aimed at providing African inputs for the future improvement of the IRI model.  相似文献   
147.
This paper is focused on unusual nighttime impulsive electron density enhancements that are rarely observed at low latitudes on a wide region of South America, under quiet and medium/high geomagnetic conditions. The phenomenon under investigation is very peculiar because besides being of brief duration, it is characterized by a pronounced compression of the ionosphere. The phenomenon was studied and analyzed using both the F2 layer critical frequency (foF2) and the virtual height of the base of the F region (h′F) values recorded at five ionospheric stations widely distributed in space, namely: Jicamarca (−12.0°, −76.8°, magnetic latitude −2.0°), Peru; Sao Luis (−2.6°, −44.2°, magnetic latitude +6.2°), Cachoeira Paulista (−22.4°, −44.6°, magnetic latitude −13.4°), and São José dos Campos (−23.2°, −45.9°, magnetic latitude −14.1°), Brazil; Tucumán (−26.9°, −65.4°, magnetic latitude −16.8°), Argentina. In a more restricted region over Tucumán, the phenomenon was also investigated by the total electron content (TEC) maps computed by using measurements from 12 GPS receivers. A detailed analysis of isoheight ionosonde plots suggests that traveling ionospheric disturbances (TIDs) caused by gravity wave (GW) propagation could play a significant role in causing the phenomenon both for quiet and for medium/high geomagnetic activity; in the latter case however a recharging of the fountain effect, due to electric fields penetrating from the magnetosphere, joins the TID propagation and plays an as much significant role in causing impulsive electron density enhancements.  相似文献   
148.
电离层对星载SAR影响的多相位屏仿真方法   总被引:1,自引:0,他引:1  
利用多相位屏技术对电离层色散、相位闪烁、幅度闪烁等影响的P波段星载SAR(Synthetic Aperture Radar)回波进行了仿真.将电离层建模为只改变信号相位的多个薄屏,信号在屏之间的衍射效应实现电离层的幅度闪烁和相位闪烁.衍射结果由斜入射条件下球面波的抛物方程在自由空间的解析解得到.穿过多相位屏的信号复振幅中包含了电离层色散、相位闪烁、幅度闪烁等影响.回波信号通过发射信号的频谱与受电离层影响的复振幅相乘得到.仿真表明,该方法可以真实反映电离层色散、相位闪烁、幅度闪烁等效应,为研究电离层影响下的星载SAR成像提供真实可靠的数据.  相似文献   
149.
Post-sunset and pre-sunrise vertical plasma drifts at the equatorial F-region have been investigated using the HF Doppler radar and ionosonde observations. Observed vertical plasma drift features during the sunrise are found to complement that observed during the evening. The post-sunset vertical plasma drift is characterized by an upward enhancement, a pre-reversal enhancement and a reversal in the drift direction. Similarly, the pre-sunrise plasma drift is characterized by a sudden downward excursion followed by an upward turning. The wavelet analysis of the plasma drift shows the presence of fluctuations in the period range 4–32 min and the short period fluctuations are attributed to the atmospheric gravity waves.  相似文献   
150.
Particularly intense events occurred on the Sun in a period around minimum of solar activity during cycle 23. We investigated the characteristics of September 2005 and December 2006 events and the properties of the correlated observations of ionospheric absorption, obtained by a 30 MHz riometer installed at Mario Zucchelli Station (MZS-Antarctica), and of geomagnetic activity recorded at Scott Base (Antarctica). Solar events are studied using the characteristics of CMEs measured with SoHO/LASCO coronagraphs and the temporal evolution of solar energetic protons in different energy ranges measured by GOES 11 spacecraft.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号