首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   194篇
  免费   10篇
  国内免费   7篇
航空   16篇
航天技术   188篇
综合类   1篇
航天   6篇
  2023年   4篇
  2022年   3篇
  2021年   8篇
  2020年   9篇
  2019年   11篇
  2018年   13篇
  2015年   5篇
  2014年   23篇
  2013年   19篇
  2012年   13篇
  2011年   9篇
  2010年   17篇
  2009年   22篇
  2008年   18篇
  2007年   1篇
  2006年   5篇
  2005年   5篇
  2003年   8篇
  2002年   1篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
排序方式: 共有211条查询结果,搜索用时 15 毫秒
131.
A numerical model of the peak height of the F2 layer, hmF2_top, is derived from the topside sounding database of 90,000 electron density profiles for a representative set of conditions provided by ISIS1, ISIS2, IK19 and Cosmos-1809 satellites for the period of 1969–1987. The model of regular hmF2 variations is produced in terms of local time, season, geomagnetic latitude, geodetic longitude and solar radio flux. No geomagnetic activity trends were discernible in the topside sounding data. The nighttime peak of hmF2_top evident for mid-latitudes disappears near the geomagnetic equator where a maximum of hmF2_top occurs at sunset hours when it can exceed 500 km at solar maximum. The hmF2 given by the IRI exceeds hmF2_top at the low solar activities. The hmF2_top, obtained by extrapolation of the first derivative of the topside profile to zero shows saturation similar to foF2 the greater the solar activity. The proposed model differs from hmF2 given by IRI based on M(3000)F2 to hmF2 conversion by empirical relationships in terms of foF2, foE and R12 with these quantities mapped globally by the ITU-R (former CCIR) from ground-based ionosonde data. The differences can be attributed to the different techniques of the peak height derivation, different epochs and different global distribution of the source data as well as the different mathematical functions involved in the maps and the model presentation.  相似文献   
132.
The dispersive nature of the ionosphere makes it possible to measure its total electron content (TEC). Thus Global Positioning System, which uses dual-frequency radio signals, is an ideal system to measure TEC. When data from an ionosonde situated in polar region was observed, the height of an approximated thin shell of electrons (shell height) used in GPS studies was seen not to be fixed but rather changing with time. Here we introduce a new method in which we included the varying shell heights derived from the ionosonde to map the slant total electron content from GPS to obtain a more precise vertical total electron content of the ionosphere contrary to some previous methods which used fixed shell heights. In this paper we also compared the ionosonde derived TEC with the GPS derived vertical TEC (vTEC) values. These GPS vTEC values were obtained from GPS slant TEC (sTEC) measurements using both fixed shell height and varying shell heights (from ionosonde measurements). For the polar regions, the varying shell height approach produced better results than the fixed shell height and compared to exponential function, Chapman function seems to be a better function to model the topside ionosphere.  相似文献   
133.
The topside ionosphere scale height extracted from two empirical models are compared in the paper. The Topside Sounder Model (TSM) provides directly the scale height (HT), while the incoherent scatter radar ionospheric model (ISRIM) provides electron density profiles and its scale height (HR) is determined by the lowest gradient in the topside part of the profile. HT and HR are presented for 7 ISR locations along with their dependences on season, local time, solar flux F10.7, and geomagnetic index ap. Comparison reveals that HT values are systematically lower than respective HR values as the average offset for all 7 stations is 55 km. For the midlatitude stations Arecibo, Shigaraki, and Millstone Hill this difference is reduced to 43 km. The range of variations of HR is much larger than that of HT, as the HT range overlaps the lower part of the HR range. Dependences on ap, DoY and LT are much stronger in the ISRIM than in TSM. This results in much larger values of HR at higher ap. Diurnal amplitude of HR is much larger than that of HT, with large maximum of HR at night. The present comparison yields the conclusion that the ISR measurements provide steeper topside Ne profiles than that provided by the topside sounders.  相似文献   
134.
The equatorial spread-F (ESF) is a phenomenon of ionopheric irregularities which are mainly generated by the generalized Rayleigh–Taylor (R–T) instability mechanism in conjunction with the other physical mechanisms, originated at the bottom side of the F-layer in the equatorial region after sunset. It degrades the quality of signals that propagate through these irregularities, especially in the navigation satellite system, which requires the high integrity signals. In this work, we analyze the ESF statistics obtained from the FM/CW ionosonde stations over Thailand longitude sector. One is at Chumphon (10.72°N, 99.37°E, dip latitude 3.0°), located near the geomagnetic equator, and the other station is located at Chiangmai (18.76°N, 98.93°E, dip latitude 12.7°). Both stations are as part of the South-East Asia Low Latitude Ionospheric Network (SEALION) project. The ionograms are obtained at every 15 min from September 2004 to August 2005, which has the monthly mean of solar 10.7 cm flux (F10.7) from ∼80 to ∼110. In addition, we compare the diurnal patterns between the ESF occurrences and the variation of virtual height of the F-layer bottom side (h’F) of these two stations. The results show that the ESF occurrences at Chumphon stations are higher than Chiangmai station in all seasons. The high ESF occurrences of both stations mostly occur in equinoctial months corresponded with the rapid rising of the monthly mean h’F in the post-sunset. However, some inconsistent results are still observed, implying the role of other factors such as gravity waves and planetary waves to ESF occurrences.  相似文献   
135.
The Mars Express spacecraft carries a low-frequency radar called MARSIS (Mars Advanced Radar for Subsurface and Ionosphere Sounding) that is designed to study the subsurface and ionosphere of Mars. In this paper, we give an overview of the ionospheric sounding results after approximately one year of operation in orbit around Mars. Several types of ionospheric echoes are commonly observed. These include vertical echoes caused by specular reflection from the horizontally stratified ionosphere; echoes from a second layer in the topside ionosphere, possibly associated with O+ ions; oblique echoes from upward bulges in the ionosphere; and a variety of other echoes that are poorly understood. The vertical echoes provide electron density profiles that are in reasonable agreement with the Chapman photo-equilibrium model of planetary ionospheres. On the dayside of Mars the maximum electron density is approximately 2 × 105 cm−3. On the nightside the echoes are often very diffuse and highly irregular, with maximum electron densities less than 104 cm−3. Surface reflections are sometimes observed in the same frequency range as the diffuse echoes, suggesting that small isolated holes exist in the nightside ionosphere, possibly similar to those that occur on the nightside of Venus. The oblique echoes arise from upward bulges in the ionosphere in regions where the crustal magnetic field of Mars is strong and nearly vertical. The bulges tend to be elongated in the horizontal direction and located in regions between oppositely directed arch-like structures in the crustal magnetic field. The nearly vertical magnetic field lines in the region between the arches are thought to connect into the solar wind, thereby allowing solar wind electrons to heat the lower levels of the ionosphere, with an attendant increase in the scale height and electron density.  相似文献   
136.
Sekar  R. 《Space Science Reviews》2003,107(1-2):251-262
In this paper the developments made in the last five years on numerical simulation/modeling studies of a complex nighttime equatorial spread F phenomenon are reviewed. Emphasis is given to the Indian work and necessary comparisons are done with other international works on this field. Investigations involving the important aspects, namely the confinement of the plasma bubble in the bottomside of the ionosphere, linear and nonlinear effects of molecular ions in the development of plasma bubbles, interaction of two modes as a seed perturbation are discussed in detail. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
137.
Valdivia  J.A. 《Space Science Reviews》2003,107(1-2):273-291
A discussion of lightning induced optical emissions in the ionosphere is presented. Emphasis is placed on accounting for the puzzling observation of the spatial structure in the optical emissions and the Sprite ‘seeding’ before the development of the ‘tendrils’ (or streamers). In this context we discuss the generation of spatial brightness variations, within the required lightning parameter thresholds, due to spatio-temporal electric fields and spatial neutral density perturbations. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
138.
This paper presents the global spatial (latitude and altitude) structure and temporal variability of the ∼23-day ionospheric zonally symmetric (s = 0) planetary wave (PW) seen in the Northern winter of 2008/2009 (October 2008–March 2009). It is shown that these ∼23-day ionospheric oscillations are forced from PWs propagating from below. The COSMIC ionospheric parameters foF2 and hmF2 and electron density at fixed altitudes and the SABER temperatures were utilized in order to define the waves which are present simultaneously in the atmosphere and ionosphere. The long-period PWs from the two data sets have been extracted through the same data analysis method. The similarity between the lower thermospheric ∼23-day (s = 0) temperature PW and its ionospheric electron density response provides valuable and strong experimental evidence for confirming the paradigm of atmosphere–ionosphere coupling.  相似文献   
139.
This study characterizes total electron content (TEC) measured by Global Positioning System (GPS) over African equatorial ionization anomaly (EIA) region for 2009–2016 period during both quiet geomagnetic conditions (Kp?≤?1) and normal conditions (1?>?Kp?≤?4). GPS-TEC data from four equatorial/low-latitude stations, namely, Addis Ababa (ADIS: 9.04°N, 38.77°E, mag. lat: 0.2°N) [Ethiopia]; Yamoussoukro (YKRO: 6.87°N, 5.24°W, mag. lat: 2.6°S) [Ivory Coast]; Malindi (MAL2; 3.00°S, 40.19°E, mag. lat: 12.4°S) [Kenya] and Libreville (NKLG; 0.35°N, 9.67°W, mag. lat: 13.5°S) [Gabon] were used for this study. Interesting features like noontime TEC bite-out, winter anomaly during the ascending and maximum phases of solar cycle 24, diurnal and seasonal variations with solar activity have been observed and investigated in this study. The day-to-day variations exhibited ionospheric TEC asymmetry on an annual scale. TEC observed at equatorial stations (EIA-trough) and EIA-crest reach maximum values between ~1300–1600 LT and ~1300–1600 LT, respectively. About 76% of the high TEC values were recorded in equinoctial months while the June solstice predominantly exhibited low TEC values. Yearly, the estimated TEC values increases or decreases with solar activity, with 2014 having the highest TEC value. Solar activity dependence of TEC within the EIA zone reveals that both F10.7?cm index and EUV flux (24–36?nm) gives a stronger correlation with TEC than Sunspot Number (SSN). A slightly higher degree of dependence is on EUV flux with the mean highest correlation coefficient (R) value of 0.70, 0.83, 0.82 and 0.88 for quiet geomagnetic conditions (Kp?≤?1) at stations ADIS, MAL2, NKLG, and YKRO, respectively. The correlation results for the entire period consequently reveals that SSN and solar flux F10.7?cm index might not be an ideal index as a proxy for EUV flux as well as to measure the variability of TEC strength within the EIA zone. The estimated TEC along the EIA crest (MAL2 and NKLG) exhibited double-hump maximum, as well as post-sunset peaks (night time enhancement of TEC) between ~2100 and 2300 LT. EIA formation was prominent during evening/post-noon hours.  相似文献   
140.
VLF电波渗透到卫星高度电离层传播的全波计算   总被引:3,自引:0,他引:3  
考虑斜向地磁场的影响将电离层设为多层水平分层各向异性有耗介质, 利用传播矩阵法求解全波方程, 进而研究分析VLF频段电离层反射系数随电波频率的变化, 电离层中两种特征极化波的折射和极化特性, 两特征波的电磁场水平分量以及坡印廷能流密度随传播高度的变化. 数值计算结果表明, 地—电离层波导中的垂直极化波比平行极化波易渗透进入电离层; 电离层中两种特征极化波可分为左旋和右旋圆极化波, 左旋分支由于D层强吸收作用表现为速衰减模, 而右旋分支表现为可传播模, 在传播过程中电磁波的能量主要存储在磁场中; 电波频率越低, 其在电离层中的传播损耗越小. 由数值模拟结果发现, 卫星监测VLF频段的低频部分及更低频段的水平磁场变化对于发现地震电离层电磁前兆异常可能更为有效.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号