首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   194篇
  免费   10篇
  国内免费   7篇
航空   16篇
航天技术   188篇
综合类   1篇
航天   6篇
  2023年   4篇
  2022年   3篇
  2021年   8篇
  2020年   9篇
  2019年   11篇
  2018年   13篇
  2015年   5篇
  2014年   23篇
  2013年   19篇
  2012年   13篇
  2011年   9篇
  2010年   17篇
  2009年   22篇
  2008年   18篇
  2007年   1篇
  2006年   5篇
  2005年   5篇
  2003年   8篇
  2002年   1篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
排序方式: 共有211条查询结果,搜索用时 15 毫秒
121.
This paper investigated the performance of the latest International Reference Ionosphere model (IRI-2016) over that of IRI-2012 in predicting total electron content (TEC) at three different stations in the Indian region. The data used were Global Positioning System (GPS) data collected during the ascending phase of solar cycle 24 over three low-latitude stations in India namely; Bangalore (13.02°N Geographic latitude, 77.57°E Geographic longitude), Hyderabad (17.25°N Geographic latitude, 78.30°E Geographic longitude) and Surat (21.16°N Geographic latitude, 72.78°E Geographic longitude). Monthly, the seasonal and annual variability of GPS-TEC have been compared with those derived from International Reference Ionosphere IRI-2016 and IRI-2012 with two different options of topside electron density: NeQuick and IRI01-corr. It is observed that both versions of IRI (i.e., IRI-2012 and IRI-2016) predict the GPS-TEC with some deviations, the latest version of IRI (IRI-2016) predicted the TEC similar to those predicted by IRI-2012 for all the seasons at all stations except for morning hours (0500 LT to 1000?LT). This shows that the effect of the updated version is seen only during morning hours and also that there is no change in TEC values by IRI-2016 from those predicted by IRI-2012 for the rest of the time of the day in the Indian low latitude region. The semiannual variations in the daytime maximum values of TEC are clearly observed from both GPS and model-derived TEC values with two peaks around March-April and September-October months of each year. Further, the Correlation of TEC derived by IRI-2016 and IRI-2012 with EUV and F10.7 shows similar results. This shows that the solar input to the IRI-2016 is similar to IRI 2012. There is no significant difference observed in TEC, bottom-side thickness (B0) and shape (B1) parameter predictions by both the versions of the IRI model. However, a clear improvement is visible in hmF2 and NmF2 predictions by IRI-2016 to that by IRI-2012. The SHU-2015 option of the IRI-2016 gives a better prediction of NmF2 for all the months at low latitude station Ahmedabad compare to AMTB 2013.  相似文献   
122.
A comprehensive analysis using nearly two decades of ionosonde data is carried out on the seasonal and solar cycle variations of Equatorial Spread F (ESF) irregularities over magnetic equatorial location Trivandrum (8.5°N, 77°E). The corresponding Rayleigh Taylor (RT) instability growth rates (γ) are also estimated. A seasonal pattern of ESF occurrence and the corresponding γ is established for low solar (LSA), medium solar (MSA) and high solar (HSA) activity periods. For LSA, it is seen that the γ maximizes during post sunset time with comparable magnitudes for autumnal equinox (AE), vernal equinox (VE) and winter solstice (WS), while for summer solstice (SS) it maximizes in the post-midnight period. Concurrent responses are seen in the ESF occurrence pattern. For MSA, γ maximizes during post-sunset for VE followed by WS and AE while SS maximises during post-midnight period. The ESF occurrence for MSA is highest for VE (80%), followed by AE (70%), WS (60%) and SS (50%). In case of HSA, maximum γ occurs for VE followed by AE, WS and SS. The concurrent ESF occurrence maximizes for VE and AE (90%), WS and SS at 70%.The solar cycle variation of γ is examined. γ shows a linear variation with F10.7?cm flux. Further, ESF percentage occurrence and duration show an exponential and linear variation respectively with γ. An empirical model on the solar activity dependence of ESF occurrence and sustenance time over Indian longitudes is arrived at using the database spanning two solar cycles for the first time.  相似文献   
123.
The effect of solar cycle and seasons on the daytime and nighttime F-layer ionization has been investigated over the equatorial and low-latitude region during 19th (1954–1964) and 20th (1965–1976) solar cycle. The F-layer critical frequency (foF2) data observed from the three Indian Ionosonde stations has been used for the present study. The dependence of foF2 on solar cycle has been examined by performing regression analysis between the foF2 values and R12 (twelve month running average sunspot number). The result shows that the magnitude of the cycle, seasons and the location of station has considerable effects on foF2. There is a significant nonlinear relationship between the foF2 values and R12 during 19th solar cycle as compared to 20th solar cycle. Further, the nighttime saturation effect is prominently seen during the 19th solar cycle and summer season. It is also observed that the most profound saturation effect appears at the equatorial ionization anomaly crest region. Seasonally, it is seen that all the stations exhibits semiannual anomaly. The phenomenon of winter anomaly decays as we move higher along the latitude and is prominently seen during the intense solar activity.  相似文献   
124.
The present paper deals with observations of wave activity in the period range 1–60 min at ionospheric heights over the Western Cape, South Africa from May 2010 to July 2010. The study is based on the Doppler type sounding of the ionosphere. The Doppler frequency shift measurements are supplemented with measurements of collocated Digisonde DPS-4D at SANSA Space Sciences, Hermanus. Nine geomagnetically quiet days and nine geomagnetically active days were included in the study. Waves of periods 4–30 min were observed during the daytime independent of the level of geomagnetic activity. Amplitudes of 10–30 min waves always increased between 14:00 and 16:15 UT (16:00–18:15 LT). Secondary maxima were observed between 06:00 and 07:00 UT (08:00–09:00 LT). The maximum wave amplitudes occurred close to the time of passage of the solar terminator in the studied region which is known to act as a source of gravity waves.  相似文献   
125.
Ionosonde data of a mid latitude station Novosibirsk (Geog. Lat. 54.6°N, Geog. Long. 83.2°E) has been analyzed for the years 1997–2006 that covers the major part of solar cycle 23. Our results show the presence of winter anomaly in the daytime F2 layer critical frequency during different phases of solar activity. Results also reveal a semiannual variation of foF2 with two maxima and a minimum that always appears in summer. While the first maximum is in the spring equinox, the second one is found to shift from autumn to winter with the increase of solar activity. The maximum height of F2 layer during the daytime shows variation with the solar activity. It is higher during the higher activity periods and lower during the periods of low activity. Results of ionosonde observations have been compared with those obtained from IRI-2007 model and it is found that model reproduces gross features of foF2 variation. However, the modeled hmF2 variations during equinoxes are significantly different from the ones derived using the ionosonde data. The model also underestimates the hmF2 values.  相似文献   
126.
 Aiming to the reliable estimates of the ionosphere differential corrections for the satellite navigation system in the presence of the ionosphere anomaly, a fault-tolerance estimating method, which is based on the distributed Kalman filtering, is proposed. The method utilizes the parallel sub-filters for estimating the ionosphere differential corrections. Meanwhile, an infinite norm (IN) method is proposed for the detection of the ionosphere irregularity in the filter processing. Once the anomaly is detected, the sub-filter contaminated by the anomaly measurements will be excluded to ensure the reliability of the estimates. The simulation is conducted to validate the method and the results indicate that the anomaly can be found timely due to the novel fault detection method based on the infinite norm. Because of the parallel sub-filter architecture, the measurements are classified by the spatial distribution so that the ionosphere anomaly can be positioned and excluded more easily. Thus, the method can provide the robust and accurate ionosphere differential corrections.  相似文献   
127.
We use observations of ionospheric scintillation at equatorial latitudes from two GPS receivers specially modified for recording, at a sampling rate of 50 Hz, the phase and the amplitude of the L1 signal and the Total Electron Content (TEC) from L1 and L2. The receivers, called GISTM (GPS Ionospheric Scintillation and TEC Monitor), are located in Vietnam (Hue, 16.4°N, 107.6°E; Hoc Mon, 10.9°N, 106.6°E). These experimental observations are analysed together with the tomographic reconstruction of the ionosphere produced by the Multi-Instrument Data Analysis System (MIDAS) for investigating the moderate geomagnetic storm which occurred on early April 2006, under low solar activity. The synergic adoption of the ionospheric imaging and of the GISTM measurements supports the identification of the scale-sizes of the ionospheric irregularities causing scintillations and helps the interpretation of the physical mechanisms generating or inhibiting the appearance of the equatorial F layer irregularities. In particular, our study attributes to the turning of the IMF (Interplanetary Magnetic Field) between northward and southward direction an important role in the inhibition of the generation of spread F irregularities resulting in a lack of scintillation enhancement in the post-sunset hours.  相似文献   
128.
Planetary upper atmospheres-coexisting thermospheres and ionospheres-form an important boundary between the planet itself and interplanetary space. The solar wind and radiation from the Sun may react with the upper atmosphere directly, as in the case of Venus. If the planet has a magnetic field, however, such interactions are mediated by the magnetosphere, as in the case of the Earth. All of the Solar System’s giant planets have magnetic fields of various strengths, and interactions with their space environments are thus mediated by their respective magnetospheres. This article concentrates on the consequences of magnetosphere-atmosphere interactions for the physical conditions of the thermosphere and ionosphere. In particular, we wish to highlight important new considerations concerning the energy balance in the upper atmosphere of Jupiter and Saturn, and the role that coupling between the ionosphere and thermosphere may play in establishing and regulating energy flows and temperatures there. This article also compares the auroral activity of Earth, Jupiter, Saturn and Uranus. The Earth’s behaviour is controlled, externally, by the solar wind. But Jupiter’s is determined by the co-rotation or otherwise of the equatorial plasmasheet, which is internal to the planet’s magnetosphere. Despite being rapid rotators, like Jupiter, Saturn and Uranus appear to have auroral emissions that are mainly under solar (wind) control. For Jupiter and Saturn, it is shown that Joule heating and “frictional” effects, due to ion-neutral coupling can produce large amounts of energy that may account for their high exospheric temperatures.  相似文献   
129.
平滑常数是影响载波相位平滑伪距精度的关键参数,实际数据处理时主要依据经验设定平滑常数。这种主观设定过程缺乏理论依据,无法达到最优平滑效果。针对此问题,以适用于实时GNSS载波相位平滑伪距的经典Hatch递推滤波算法为基础,在连续时间域上分析了载波相位平滑伪距误差的主要构成,给出了总误差估算公式,分析了平滑常数对平滑精度的影响传导机制。进一步,采用令平滑总误差最小为目标的极值法推导给出了最优载波相位平滑常数的计算公式,给出了最优载波相位平滑伪距的完整处理步骤。最优平滑常数算法在数学意义上最优,大幅压缩了伪距测量误差,又不会引入过大的电离层发散误差。通过两个实际算例,证明了算法有效性。  相似文献   
130.
Electron density measured by the Indian satellite SROSS C2 at the altitude of ∼500 km in the 75°E longitude sector for the ascending half of the solar cycle 22 from 1995 to 1999 are used to study the position and density of the equatorial ionization anomaly (EIA). Results show that the latitudinal position and peak electron density of the EIA crest and crest to trough ratios of the anomaly during the 10:00–14:00 LT period vary with season and from one year to another. Both EIA crest position and density are found to be asymmetric about the magnetic equator and the asymmetry depends on season as well as the year of observation, i.e., solar activity. The latitudinal position of the crest of the EIA and the crest density bears good positive correlation with F10.7 and the strength of the equatorial electrojet (EEJ).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号