首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   837篇
  免费   168篇
  国内免费   228篇
航空   869篇
航天技术   116篇
综合类   161篇
航天   87篇
  2024年   1篇
  2023年   16篇
  2022年   28篇
  2021年   37篇
  2020年   46篇
  2019年   49篇
  2018年   36篇
  2017年   32篇
  2016年   57篇
  2015年   52篇
  2014年   56篇
  2013年   42篇
  2012年   52篇
  2011年   67篇
  2010年   48篇
  2009年   68篇
  2008年   54篇
  2007年   51篇
  2006年   35篇
  2005年   28篇
  2004年   32篇
  2003年   27篇
  2002年   32篇
  2001年   12篇
  2000年   19篇
  1999年   26篇
  1998年   26篇
  1997年   22篇
  1996年   24篇
  1995年   17篇
  1994年   24篇
  1993年   22篇
  1992年   28篇
  1991年   23篇
  1990年   11篇
  1989年   14篇
  1988年   19篇
排序方式: 共有1233条查询结果,搜索用时 468 毫秒
61.
利用前缘旋转控制边条翼外翼分离   总被引:1,自引:0,他引:1  
边条翼在边条较小时中等迎角以上外翼就会出现分离,现提出用转动前缘表面来控制边条翼外翼分离。通过测力、油流和烟丝实验研究了转动前缘对机翼气动特性的影响。结果表明,在这种机翼上转动前缘对控制分离是有效的,升力增量最大可达30%。可以预期,转动前缘与边条的综合作用,机翼的分离特性将有较大的改善  相似文献   
62.
平面叶栅内固体粒子运动特性的研究   总被引:2,自引:1,他引:1  
伊景海  史峰  徐忠 《航空动力学报》1995,10(3):277-279,313
在利用高速摄影技术获得固体粒子在平面叶栅内运动特性的基础上, 采用Lagrangian轨迹法分别在考虑与不考虑边界层影响的情况下, 计算了固体粒子在叶栅内的运动轨迹和速度。通过与实验结果的比较发现:在利用Lagrangian法计算固体粒子的运动特性时, 对于尺寸比较大的粒子可以不考虑边界层的影响, 而对于尺寸比较小的粒子则需考虑边界层的影响。   相似文献   
63.
激波-边界层-分离流相互干扰三维湍流的数值模拟   总被引:1,自引:0,他引:1  
韩振学  方韧  纪永春 《航空动力学报》1998,13(2):144-148,218
本文采用数值方法求解时间相关三维可压缩雷诺平均Navier-Stokes方程组,模拟激波—边界层—分离流相互干扰三维湍流流动。湍流模型为Badwin-Lomax两层代数模型,改进后用于三维内流问题。采用单元中心有限体积法离散流场控制方程,VanLeer矢通量格式计算无粘通量,中心差分法计算粘性通量,LUSGS时间推进格式计算定常流场。本文以二元跨音速扩压器内三流动为算例,数值模拟较强激波—边界层—分离流相互干扰维湍流流动,并与实验结果进行了比较。数值模拟结果,在激波强度、分离点位置和再附点位置等方面,与实验结果吻合较好。  相似文献   
64.
机身边界层控制研究   总被引:1,自引:1,他引:0  
朱国祥  唐登斌 《航空学报》2004,25(2):117-120
对带壁面抽吸的三维可压缩机身边界层控制进行了计算研究。采用了非正交曲线坐标系边界层方程,通过修改矢量流函数关系式,将壁面法向速度转变成为控制方程的一个可调参数,从而消除了边界条件与方程未知参量之间的非线性耦合;所发展的横向分段推进数值技术,可用于计算横流速度在横向多次反号的复杂边界层流动;设计不同的壁面抽吸系数分布,以研究边界层控制对多种边界层特性的影响。结果表明:壁面抽吸对边界层的控制效果是显著的,合理的抽吸分布能有效地减小机身阻力。  相似文献   
65.
针对不同流速比混合层流场气动光学效应问题,首先采用大涡模拟数值方法进行了数值仿真,其次用光线追迹方法进行了气动光学效应仿真,最后对混合层的气动光学效应进行了评价。结果表明,混合层流场涡结构与光程差极小值存在一一对应关系,并且其流速比低的混合层气动光学效应更加严重。同时,研究了不同光学参数对斯特列尔比的影响,得到了相应的规律。  相似文献   
66.
以长三角地区作为研究区域,提出了使用深度学习算法来实现主被动遥感数据结合反演地表PM2.5浓度的方法。基于MPL观测数据,使用雾霾层高度(HLH)替换了边界层高度(BLH)特征,对已有的基于气溶胶光学厚度(AOD)结合大气BLH来反演PM2.5浓度的算法进行了改进。为提高数据覆盖率,对研究区域内的MAIAC AOD进行了填补与评估。利用多种机器学习算法实现了日间逐小时的PM2.5浓度估算,模型验证相关性最高可达0.87。该方法能够为观测气候变化、应对大气污染提供有效帮助。  相似文献   
67.
文章针对现有临近空间浮空器持久区域驻留期间面临的“超热”、“超压”和抗风机动飞行对材料和能源技术的挑战,提出一种充分利用自然界热能和准零风层风场环境的新型临近空间浮空器技术方案。文章分别介绍了新型临近空间浮空器的工作原理、系统组成、功能特点和飞行操控策略;通过浮空器热建模仿真分析和参数总体设计,研究了主气囊热控参数、浮空器白天和夜间“超热”能力,以及浮空器体积规模之间的耦合关系。结果表明,通过主气囊热控参数优化设计,可使浮空器白天“超热”值在100K以上,夜间“超热”值在20K以上,并给出了20~80K“超热”范围内的新型浮空器总体参数设计结果,这些结果满足浮空器高度调节所需浮升能力变化要求。  相似文献   
68.
陈崇沛  梁剑寒  关清帝  高天运 《航空学报》2021,42(z1):726364-726364
一维湍流(ODT)方法是一种能在一维计算域上遵循湍流基本物理规律的湍流建模方法。通过结合确定性和随机性求解方法,能够在一维计算域上准确捕捉到湍流统计规律,且降维建模可显著减小计算量。ODT方法主要被广泛用于不可压湍流和湍流燃烧研究,若要将其拓展用于模拟高速可压缩湍流,需对建模方法进行深度改进。相比于不可压ODT方法,本文基于欧拉参考框架,针对可压缩湍流的特性,将因变量由原始变量改为有利于减小可压缩湍流模拟误差的守恒通量,并加入了组分求解模块。对确定性和随机性求解模块均进行了相应的深度改进,开发出具有标量混合模拟功能的守恒型可压缩ODT方法。在确定性模块中改为求解以守恒通量为变量的一维截断控制方程,在随机性模块中构造一维涡时,将三联映射的作用对象也相应地由原始变量改为守恒通量,并选用了可保证变密度情况下动量守恒的双核变换。通过模拟空间发展超声速平面湍流混合层并将自相似阶段结果与实验结果比对,验证该方法对可压缩剪切湍流场中标量混合的捕捉精度。守恒型可压缩ODT方法模拟得到的速度场和组分场的平均剖面和脉动强度分布与实验结果准确吻合,精度明显优于传统的耦合梯度扩散亚格子模型的大涡模拟方法(LES-GRAD.DIFF.)以及耦合线性涡(LEM)亚格子模型的大涡模拟方法(LES-LEM),且该方法的降维处理使其在降低计算成本方面具有显著优势。  相似文献   
69.
为研究螺旋爆轰胞格结构,选取预混气C2H2+2.5O2+85%Ar、C2H2+2.5O2+70%Ar与C2H2+5N2O在光滑管中进行爆轰实验,使用烟膜记录管道侧壁与端面胞格结构。编写MATLAB程序处理烟膜记录,比较侧壁横波间距、端面胞格直径平均值,以及相邻端面胞格中心点距离平均值与标准差。其中,侧壁横波间距明显大于管壁附近端面胞格直径平均值。另外,相较于稳定气,不稳定气近管壁与近管轴区域的端面胞格直径差异更大,不同压力下预混气C2H2+5N2O近管壁与近管轴区域的端面胞格直径差异分别为47.91 %、59.64 %、40.42 % 与37.21 %。为进一步探索爆轰波内部结构,使用CH4+2O2在5 mm、15 mm与25 mm宽度的环形管进行实验,对比侧壁及端面烟膜结果可观测到内部螺旋横波旋转方式。相对环管宽度而言,初始压力是胞格尺寸的主要影响参数,而整体上外侧壁胞格尺寸稍大于内侧壁胞格尺寸。  相似文献   
70.
姜健  赵海刚  符小刚 《推进技术》2021,42(10):2249-2256
为了分析评估某型歼击机无隔道进气道附面层的排除特性,设计搭建鼓包表面附面层压力梯度测量试验系统,进行了不同飞行高度、马赫数和姿态角等工况下的飞行试验。通过对飞行试验数据的整理、计算和对比分析同型号的缩比模型风洞试验结果,研究了无隔道进气道鼓包表面附面层排除特性。研究结果表明:稳定平飞时,在亚音速范围内,随着飞行高度的增加,鼓包构型对附面层的排除效果增大,而在超音速范围内,变化规律相反;在接近马赫数1.8及以上飞行工况下,鼓包表面附面层的扫除能力有所减弱,附面层气流分离加速,进而会造成较大的进气压力损失和畸变。单纯迎角飞行有利于增强附面层的排除能力;而带侧滑角飞行时,附面层压力系数曲线的拐点沿鼓包中心线平行向“背风面”偏移,偏移量与侧滑角成正比,进气道鼓包表面“迎风面”附面层排除能力增大,而“背风面”受气流分离影响而减弱。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号