全文获取类型
收费全文 | 1665篇 |
免费 | 318篇 |
国内免费 | 65篇 |
专业分类
航空 | 278篇 |
航天技术 | 980篇 |
综合类 | 8篇 |
航天 | 782篇 |
出版年
2025年 | 8篇 |
2024年 | 23篇 |
2023年 | 53篇 |
2022年 | 35篇 |
2021年 | 69篇 |
2020年 | 75篇 |
2019年 | 51篇 |
2018年 | 75篇 |
2017年 | 18篇 |
2016年 | 47篇 |
2015年 | 53篇 |
2014年 | 176篇 |
2013年 | 105篇 |
2012年 | 67篇 |
2011年 | 157篇 |
2010年 | 114篇 |
2009年 | 106篇 |
2008年 | 98篇 |
2007年 | 71篇 |
2006年 | 69篇 |
2005年 | 93篇 |
2004年 | 55篇 |
2003年 | 33篇 |
2002年 | 49篇 |
2001年 | 40篇 |
2000年 | 48篇 |
1999年 | 55篇 |
1998年 | 32篇 |
1997年 | 22篇 |
1996年 | 24篇 |
1995年 | 22篇 |
1994年 | 7篇 |
1993年 | 15篇 |
1992年 | 9篇 |
1991年 | 15篇 |
1990年 | 12篇 |
1989年 | 11篇 |
1988年 | 22篇 |
1987年 | 8篇 |
1986年 | 4篇 |
1984年 | 2篇 |
排序方式: 共有2048条查询结果,搜索用时 0 毫秒
301.
302.
空间相机相对辐射定标精度分析 总被引:2,自引:0,他引:2
文章介绍了CCD相机辐射定标概念;分析对比了平均行标准差法、平均标准差法和广义噪声法三种计算相对辐射定标精度的算法;对归一化系数法、最小二乘法进行相对定标的数学原理进行了介绍;并采用中巴地球资源卫星02B CCD相机辐射定标数据计算三种定标精度,验证了理论分析的正确性,并指出了现有定义算法的不足处。 相似文献
303.
304.
Vitali Braun A. LüpkenS. Flegel J. GelhausM. Möckel C. KebschullC. Wiedemann P. Vörsmann 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
Today’s space debris environment shows major concentrations of objects within distinct orbital regions for nearly all size regimes. The most critical region is found at orbital altitudes near 800 km with high declinations. Within this region many satellites are operated in so called sun-synchronous orbits (SSO). Among those, there are Earth observation, communication and weather satellites. Due to the orbital geometry in SSO, head-on encounters with relative velocities of about 15 km/s are most probable and would thus result in highly energetic collisions, which are often referred to as catastrophic collisions, leading to the complete fragmentation of the participating objects. So called feedback collisions can then be triggered by the newly generated fragments, thus leading to a further population increase in the affected orbital region. This effect is known as the Kessler syndrome. 相似文献
305.
M. Nelson W.F. DempsterJ.P. Allen 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(5):675-683
Development of reliable and robust strategies for long-term life support for planetary exploration must be built from real-time experimentation to verify and improve system components. Also critical is incorporating a range of viable options to handle potential short-term life system imbalances. This paper revisits some of the conceptual framework for a Mars base prototype which has been developed by the authors along with others previously advanced (“Mars on Earth®”) in the light of three years of experimentation in the Laboratory Biosphere, further investigation of system alternatives and the advent of other innovative engineering and agri-ecosystem approaches. Several experiments with candidate space agriculture crops have demonstrated the higher productivity possible with elevated light levels and improved environmental controls. For example, crops of sweet potatoes exceeded original Mars base prototype projections by an average of 46% (53% for best crop) ultradwarf (Apogee) wheat by 9% (23% for best crop), pinto bean by 13% (31% for best crop). These production levels, although they may be increased with further optimization of lighting regimes, environmental parameters, crop density etc. offer evidence that a soil-based system can be as productive as the hydroponic systems which have dominated space life support scenarios and research. But soil also offers distinct advantages: the capability to be created on the Moon or Mars using in situ space resources, reduces long-term reliance on consumables and imported resources, and more readily recycling and incorporating crew and crop waste products. In addition, a living soil contains a complex microbial ecosystem which helps prevent the buildup of trace gases or compounds, and thus assist with air and water purification. The atmospheric dynamics of these crops were studied in the Laboratory Biosphere adding to the database necessary for managing the mixed stands of crops essential for supplying a nutritionally adequate diet in space. This paper explores some of the challenges of small bioregenerative life support: air-sealing and facility architecture/design, balance of short-term variations of carbon dioxide and oxygen through staggered plantings, options for additional atmospheric buffers and sinks, lighting/energy efficiency engineering, crop and waste product recycling approaches, and human factor considerations in the design and operation of a Mars base. An “Earth to Mars” project, forging the ability to live sustainably in space (as on Earth) requires continued research and testing of these components and integrated subsystems; and developing a step-by-step learning process. 相似文献
306.
Matthew A. Lazzara Alex Coletti Benjamin L. Diedrich 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
The ability to observe meteorological events in the polar regions of the Earth from satellite celebrated an anniversary, with the launch of TIROS-I in a pseudo-polar orbit on 1 April 1960. Yet, after 50 years, polar orbiting satellites are still the best view of the polar regions of the Earth. The luxuries of geostationary satellite orbit including rapid scan operations, feature tracking, and atmospheric motion vectors (or cloud drift winds), are enjoyed only by the middle and tropical latitudes or perhaps only cover the deep polar regions in the case of satellite derived winds from polar orbit. The prospect of a solar sailing satellite system in an Artificial Lagrange Orbit (ALO, also known as “pole sitters”) offers the opportunity for polar environmental remote sensing, communications, forecasting and space weather monitoring. While there are other orbital possibilities to achieve this goal, an ALO satellite system offers one of the best analogs to the geostationary satellite system for routine polar latitude observations. 相似文献
307.
308.
针对空间宽幅相机在进行非均匀性校正过程中相机镜头与积分球输出口的相对位置发生变换后非均匀性校正精度下降的原因进行了分析,提出了一种改进的融合多点位置的非均匀校正新方法,即为了消除积分球的角均匀性和面均匀性的不足,采用获取多个位置的大量定标图像,融合求取平均值的方法得到校正系数来削弱这种影响,并进行试验验证分析。结果表明,多点融合的校正方法在积分球输出口光强不均匀、又无法固定相机与积分球相对位置的前提下,减少了积分球光强的不均匀性对系数可靠性的影响,相对辐射定标的非均匀校正精度得到大幅提高。 相似文献
309.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2020,65(7):1714-1722
The space debris environment is one of the major threats against payloads. Space debris orbital distribution is of great importance for space debris environment modeling. Due to perturbation factors, the Right Ascension of Ascending Node (RAAN) of space objects changes consistently, causing regular rotation of the orbit plane around Earth’s axis. Based on the investigation of the RAAN perturbation rate of concerned objects, this paper proposes a RAAN discretization method in order to present the space debris longitude-dependent distribution. Combined with two line element (TLE) data provided by the US Space Surveillance Network, the estimated value from RAAN discretization method is compared with the real case. The results suggest that using only the initial orbital data at the beginning of the time interval of interest, the RAAN discretization method is able to provide reliable longitude distribution of concerned targets in the next following period. Furthermore, spacecraft cumulative flux against space debris is calculated in this paper. The results suggest that the relevance between spacecraft RAAN setup and flux output is much smaller for LEO targets than MEO targets, which corresponds with the theory analysis. Since the nonspherical perturbation is the major factor for RAAN variation, the RAAN perturbation rate has little connection with the size of orbital objects. In other words, the RAAN discretization method introduced in this paper also applies to space debris of different size range, proposing a possible suggestion for the improvement of space debris environment engineering models. 相似文献
310.
T. Flohrer H. Krag H. Klinkrad T. Schildknecht 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
Under ESA contract an industrial consortium including Aboa Space Research Oy (ASRO), the Astronomical Institute of the University of Bern (AIUB), and the Dutch National Aerospace Laboratory (NLR), proposed the observation concept, developed a suitable sensor architecture, and assessed the performance of a space-based optical (SBO) telescope in 2005. The goal of the SBO study was to analyse how the existing knowledge gap in the space debris population in the millimetre and centimetre regime may be closed by means of a passive optical instrument. The SBO instrument was requested to provide statistical information on the space debris population in terms of number of objects and size distribution. The SBO instrument was considered to be a cost-efficient with 20 cm aperture and 6° field-of-view and having flexible integration requirements. It should be possible to integrate the SBO instrument easily as a secondary payload on satellites launched into low-Earth orbits (LEO), or into geostationary orbit (GEO). Thus the selected mission concept only allowed for fix-mounted telescopes, and the pointing direction could be requested freely. Since 2007 ESA focuses space surveillance and tracking activities in the Space Situational Awareness (SSA) preparatory program. Ground-based radars and optical telescopes are studied for the build-up and maintenance of a catalogue of objects. In this paper we analyse how the proposed SBO architecture could contribute to the space surveillance tasks survey and tracking. We assume that the SBO instrumentation is placed into a circular sun-synchronous orbit at 800 km altitude. We discuss the observation conditions of objects at higher altitude, and select an orbit close to the terminator plane. A pointing of the sensor orthogonal to the orbital plane with optimal elevation slightly in positive direction (0° and +5°) is found optimal for accessing the entire GEO regime within one day, implying a very good coverage of controlled objects in GEO, too. Simulations using ESA’s Program for Radar and Optical Observation Forecasting (PROOF) in the version 2005 and a GEO reference population extracted from DISCOS revealed that the proposed pointing scenario provides low phase angles together with low angular velocities of the objects crossing the field-of-view. Radiometric simulations show that the optimal exposure time is 1–2 s, and that spherical objects in GEO with a diameter of below 1 m can be detected. The GEO population can be covered under proper illumination nearly completely, but seasonal drops of the coverage are possible. Subsequent observations of objects are on average at least every 1.5 days, not exceeding 3 days at maximum. A single observation arc spans 3° to 5° on average. Using a simulation environment that connects PROOF to AIUB’s program system CelMech we verify the consistency of the initial orbit determination for five selected test objects on subsequent days as a function of realistic astrometric noise levels. The initial orbit determination is possible. We define requirements for a correlator process essential for catalogue build-up and maintenance. Each single observation should provide an astrometric accuracy of at least 1”–1.5” so that the initially determined orbits are consistent within a few hundred kilometres for the semi-major axis, 0.01 for the eccentricity, and 0.1° for the inclination. 相似文献