首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2143篇
  免费   320篇
  国内免费   328篇
航空   585篇
航天技术   1012篇
综合类   89篇
航天   1105篇
  2024年   3篇
  2023年   45篇
  2022年   51篇
  2021年   89篇
  2020年   87篇
  2019年   68篇
  2018年   93篇
  2017年   43篇
  2016年   69篇
  2015年   93篇
  2014年   214篇
  2013年   153篇
  2012年   114篇
  2011年   208篇
  2010年   154篇
  2009年   150篇
  2008年   144篇
  2007年   101篇
  2006年   115篇
  2005年   115篇
  2004年   77篇
  2003年   57篇
  2002年   73篇
  2001年   54篇
  2000年   66篇
  1999年   74篇
  1998年   45篇
  1997年   36篇
  1996年   31篇
  1995年   28篇
  1994年   16篇
  1993年   18篇
  1992年   17篇
  1991年   17篇
  1990年   13篇
  1989年   16篇
  1988年   30篇
  1987年   8篇
  1986年   4篇
  1984年   2篇
排序方式: 共有2791条查询结果,搜索用时 281 毫秒
111.
In view of potential application as a construction material on the lunar surface the mechanical integrity of sulfur concrete was evaluated after being subjected to simulated temperature cycles. Here, small cubes of sulfur concrete were repeatedly cycled between room (20 °C) and liquid nitrogen (−191 °C) temperatures after which they, and non-cycled cubes, were evaluated by compression testing. The compression strength of the non-cycled samples averaged ∼35 MPa (5076 psi) before failing whereas the cycled samples fractured at about 7 MPa (1015 psi). Microscopic examination of the fracture surfaces from the cycled samples showed clear de-bonding of the sulfur from the aggregate whereas it was seen adhering in those non-cycled. Based on a simple analysis it was concluded that the large strength discrepancy between cycled and non-cycled samples is due to differences between the coefficients of thermal expansion of the materials constituting the concrete.  相似文献   
112.
113.
现代小卫星与大众化空间时代   总被引:1,自引:1,他引:0  
通过论述现代小卫星技术30年的发展历程,总结其技术发展水平并举出现阶段的典型应用实例,讨论小卫星未来的发展方向,论述大众化空间与现代小卫星的关系,总结现代小卫星技术服务于大众化空间的各项特征。  相似文献   
114.
Progress in information technology has enabled to collecting data in near real-time. This significantly improves our ability to monitor space weather conditions. We deliver information on near real-time space weather conditions via the internet. We have started two collaborations with space weather users. One is a measurement of geomagnetically induced current (GIC) of power grids in collaboration with a Japanese power company. The other concerns radiation hazards for aircrews. The radiation exposure level for aircrews was been determined by the Japanese government by the end of 2005. The proposed upper limit is 5 mSV a year. We are actively seeking ways to contribute to this subject. Our activities at the Japanese space weather center are reported in this paper.  相似文献   
115.
Control Moment Gyroscope (CMG) is an effective candidate for agile satellites and large spacecraft attitude control because of its powerful torque amplification capability. The most serious situation, however, in using CMG is the inherent geometric singularity problem, where there’s no torque output along a particular direction. Space expansion method has been proposed in this work for the singularity analysis. Based on inverse mapping transformation, an expanded Jacobian matrix which is a full rank square matrix is obtained. The singular angle sets of the 3-parallel cluster and pyramid cluster are distinguished using space expansion method. An effective hybrid steering strategy, able to deal with the elliptic singularity, is further proposed. Simulation results demonstrate the excellent performance of the proposed steering logic compared to the generalized singular robust logic and pseudo inverse logic in terms of energy consumption and torque error.  相似文献   
116.
An elementary science education professional development partnership between Culver City Unified School District teachers and UCLA has been formed. The project was designed to assist teachers to comfortably present introductory space science concepts, to support them in their efforts, and to aid them in encouraging their students to develop inquiry skills related to space sciences. The project encourages teacher use of observational science techniques in their classrooms, the use of NASA solar mission images and enhanced use of astronomical observation to facilitate discovery learning. The integrated approach of the project has fostered collegial learning activities among the participating teachers and offered them opportunities for continued renewal and professional development of teacher competencies in astronomy and space science. The activities used in the classroom were developed by others, classroom tested, and specifically address National Science Education and California Science Content Standards. These activities have been sustained through on-going collaboration between the scientist and the teachers, a summer Research Experience for Teachers program, and on-going, grade-specific, district-sponsored workshops. Assessment of the value of the program is done by the school district and is used to continuously improve each workshop and program component. Culver City (California) Unified School District is a small urban school district located on the Westside of Los Angeles. This paper describes the program and the plans for incorporating IHY-themed science into the classroom.  相似文献   
117.
Based on a formerly developed ground-based prototype of space plant-growing facility, the development of its improved prototype has been finished, so as to make its operating principle better adapt to the space microgravity environment. According to the developing experience of its first generation prototype and detailed demonstration and design of technique plan, its blueprint design and machining of related components, whole facility installment, debugging and trial operations were all done gradually. Its growing chamber contains a volume of about 0.5 m3 and a growing area of approximate 0.5 m2; the atmospheric environmental parameters in the growing chamber and water content in the growing media were controlled totally and effectively; lighting source is a combination of both red and blue light emitting diodes (LED). The following demonstrating results showed that the entire system design of the prototype is reasonable and its operating principle can nearly meet the requirements of space microgravity environment. Therefore, our plant-growing technique in space was advanced further, which laid an important foundation for next development of the space plant-growing facility and plant-cultivating experimental research in space microgravity condition.  相似文献   
118.
The problem of a spacecraft orbiting the Neptune–Triton system is presented. The new ingredients in this restricted three body problem are the Neptune oblateness and the high inclined and retrograde motion of Triton. First we present some interesting simulations showing the role played by the oblateness on a Neptune’s satellite, disturbed by Triton. We also give an extensive numerical exploration in the case when the spacecraft orbits Triton, considering Sun, Neptune and its planetary oblateness as disturbers. In the plane a × I (a = semi-major axis, I = inclination), we give a plot of the stable regions where the massless body can survive for thousand of years. Retrograde and direct orbits were considered and as usual, the region of stability is much more significant for the case of direct orbit of the spacecraft (Triton’s orbit is retrograde). Next we explore the dynamics in a vicinity of the Lagrangian points. The Birkhoff normalization is constructed around L2, followed by its reduction to the center manifold. In this reduced dynamics, a convenient Poincaré section shows the interplay of the Lyapunov and halo periodic orbits, Lissajous and quasi-halo tori as well as the stable and unstable manifolds of the planar Lyapunov orbit. To show the effect of the oblateness, the planar Lyapunov family emanating from the Lagrangian points and three-dimensional halo orbits are obtained by the numerical continuation method.  相似文献   
119.
120.
Development of reliable and robust strategies for long-term life support for planetary exploration must be built from real-time experimentation to verify and improve system components. Also critical is incorporating a range of viable options to handle potential short-term life system imbalances. This paper revisits some of the conceptual framework for a Mars base prototype which has been developed by the authors along with others previously advanced (“Mars on Earth®”) in the light of three years of experimentation in the Laboratory Biosphere, further investigation of system alternatives and the advent of other innovative engineering and agri-ecosystem approaches. Several experiments with candidate space agriculture crops have demonstrated the higher productivity possible with elevated light levels and improved environmental controls. For example, crops of sweet potatoes exceeded original Mars base prototype projections by an average of 46% (53% for best crop) ultradwarf (Apogee) wheat by 9% (23% for best crop), pinto bean by 13% (31% for best crop). These production levels, although they may be increased with further optimization of lighting regimes, environmental parameters, crop density etc. offer evidence that a soil-based system can be as productive as the hydroponic systems which have dominated space life support scenarios and research. But soil also offers distinct advantages: the capability to be created on the Moon or Mars using in situ space resources, reduces long-term reliance on consumables and imported resources, and more readily recycling and incorporating crew and crop waste products. In addition, a living soil contains a complex microbial ecosystem which helps prevent the buildup of trace gases or compounds, and thus assist with air and water purification. The atmospheric dynamics of these crops were studied in the Laboratory Biosphere adding to the database necessary for managing the mixed stands of crops essential for supplying a nutritionally adequate diet in space. This paper explores some of the challenges of small bioregenerative life support: air-sealing and facility architecture/design, balance of short-term variations of carbon dioxide and oxygen through staggered plantings, options for additional atmospheric buffers and sinks, lighting/energy efficiency engineering, crop and waste product recycling approaches, and human factor considerations in the design and operation of a Mars base. An “Earth to Mars” project, forging the ability to live sustainably in space (as on Earth) requires continued research and testing of these components and integrated subsystems; and developing a step-by-step learning process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号