首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2763篇
  免费   267篇
  国内免费   349篇
航空   1438篇
航天技术   1056篇
综合类   650篇
航天   235篇
  2024年   5篇
  2023年   44篇
  2022年   32篇
  2021年   101篇
  2020年   98篇
  2019年   104篇
  2018年   102篇
  2017年   68篇
  2016年   103篇
  2015年   114篇
  2014年   167篇
  2013年   167篇
  2012年   203篇
  2011年   227篇
  2010年   181篇
  2009年   204篇
  2008年   176篇
  2007年   137篇
  2006年   106篇
  2005年   139篇
  2004年   83篇
  2003年   59篇
  2002年   71篇
  2001年   60篇
  2000年   58篇
  1999年   70篇
  1998年   46篇
  1997年   59篇
  1996年   45篇
  1995年   59篇
  1994年   80篇
  1993年   41篇
  1992年   53篇
  1991年   34篇
  1990年   32篇
  1989年   28篇
  1988年   13篇
  1987年   7篇
  1986年   3篇
排序方式: 共有3379条查询结果,搜索用时 156 毫秒
471.
A numerical model, based on Parker’s transport equation, describing the modulation of anomalous cosmic rays and containing diffusive shock acceleration is applied. The role of radial perpendicular diffusion at the solar wind termination shock, and as the dominant diffusion coefficient in the outer heliosphere, is studied, in particular the role it plays in the effectiveness of the acceleration of anomalous protons and helium when its latitude dependence is changed. It is found that the latitudinal enhancement of radial perpendicular diffusion towards the heliospheric poles and along the termination shock has a prominent effect on the acceleration of these particles. It results in a ‘break’ in the energy spectrum for anomalous protons at ∼6.0 MeV, causing the spectral index to change from E−1.38 to E−2.23, but for anomalous helium at ∼3.0 MeV, changing the spectral index from E−1.38 to E−2.30. When approaching the simulated TS, the changes in the modulated spectra as they unfold to a ‘steady’ power law shape at energies below 50 MeV are much less prominent as a function of radial distances when radial perpendicular diffusion is increased with heliolatitude.  相似文献   
472.
The results of modeling of ionospheric disturbances observed in the East Asian region during moderate storms are presented. The numerical model for ionosphere–plasmasphere coupling developed at the ISTP SB RAS is used to interpret the data of observations at ionospheric stations located in the longitudinal sector of 90–130°E at latitudes from auroral zone to equator. There is obtained a reasonable agreement between measurements and modeling results for winter and equinox. In the summer ionosphere, at the background of high ionization by the solar EUV radiation in the quiet geomagnetic period the meridional thermospheric wind strongly impacts the electron concentration in the middle and auroral ionosphere. The consistent calculations of the thermospheric wind permit to obtain the model results which are closer to summer observations. The actual information about the space-time variations of thermosphere and magnetosphere parameters should be taken into account during storms.  相似文献   
473.
Velocity measurements of the solar wind in the region of its acceleration were carried out in 1984 with Venera Orbiters using the following specific radio sounding techniques: (i) phase and frequency correlations from two or three widely-spaced ground stations; (ii) phase and frequency correlations from two spacecraft and two widely-spaced ground stations; (iii) two station two-way coherent Doppler measurements; (iv) determination of the break frequency in power spectra of intensity fluctuations. Our results are substantially lower than those derived from direct Doppler shift measurements of transition region and lower coronal resonance lines and those from measurements applying the Doppler dimming technique.  相似文献   
474.
The solar physics studies in China during 2004-2006 from solar interior to solar atmospheres and solar-interplanetary space are summarized. These researches are arranged under the topics of solar interior, photosphere, chromosphere and transition region, corona, flares and CMEs (and the associated radio bursts, X-ray/γ-ray bursts and particle acceleration), solar wind, solar cycle, and ground-based instrumentation.  相似文献   
475.
Solar and stellar activity is a result of complex interaction between magnetic field, turbulent convection and differential rotation in a star’s interior. Magnetic field is believed to be generated by a dynamo process in the convection zone. It emerges on the surface forming sunspots and starspots. Localization of the magnetic spots and their evolution with the activity cycle is determined by large-scale interior flows. Thus, the internal dynamics of the Sun and other stars hold the key to understanding the dynamo mechanism and activity cycles. Recently, significant progress has been made for modeling magnetohydrodynamics of the stellar interiors and probing the internal rotation and large-scale dynamics of the Sun by helioseismology. Also, asteroseismology is beginning to probe interiors of distant stars. I review key achievements and challenges in our quest to understand the basic mechanisms of solar and stellar activity.  相似文献   
476.
The Standard Radiation Environment Monitor (SREM) is a simple particle detector developed for wide application on ESA satellites. It measures high-energy protons and electrons of the space environment with a 20° angular resolution and limited spectral information. Of the ten SREMs that have been manufactured, four have so far flown. The first model on STRV-1c functioned well until an early spacecraft failure. The other three are on-board, the ESA spacecraft INTEGRAL, ROSETTA and PROBA-1. Another model is flying on GIOVE-B, launched in April 2008 with three L-2 science missions to follow: both Herschel and Planck in 2008, and GAIA in 2011). The diverse orbits of these spacecraft and the common calibration of the monitors provides a unique dataset covering a wide range of B-L* space, providing a direct comparison of the radiation levels in the belts at different locations, and the effects of geomagnetic shielding. Data from the PROBA/SREM and INTEGRAL/IREM are compared with existing radiation belt models.  相似文献   
477.
Solar activity prediction services started in 1960’s in National Astronomical Observatories, Chinese Academy of Sciences (NAOC). As one of the members of the International Space Environment Service (ISES), Regional Warning Center of China (RWC-China) was set up in 1990’s. Solar Activity Prediction Center (SAPC), as one of the four sub-centers of RWC-China, is located in NAOC. Solar activity prediction studies and services in NAOC cover short-term, medium-term, and long-term forecast of solar activities. Nowadays, certain prediction models, such as solar X-ray flare model, solar proton event model, solar 10 cm radio flux model, have been established for the practical prediction services. Recently, more and more physical analyses are introduced in the studies of solar activity prediction, such as the magnetic properties of solar active regions and magnetic structure of solar atmosphere. Besides traditional statistics algorithms, Machine Learning and Artificial Intelligence techniques, such as Support Vector Machine (SVM) method, are employed in the establishment of forecast models. A Web-based integrated platform for solar activity data sharing and forecast distribution is under construction.  相似文献   
478.
In this paper we present a new mechanism of the main energy conversion of the solar flare. Since a flare inducing prominence (flux tube) rises Vz ? 300 km s−1, the plasmas below it cannot continuously eject with Alfvén speeds of VA = 3000 km s−1 but probably with Vz ≈ ±100 km s−1. Plasma up and downflows with VA will within a short duration be blocked between the chromosphere where reconnected flux tubes are piling up, and the slowly rising flux rope. Hence the Petschek slow shock mechanism is difficult to be realized as a major energy converting mechanism.  相似文献   
479.
We investigate accelerated electrons observed by Mars Global Surveyor (MGS), using data from the Electron Reflectometer (ER) instrument. We find three different types of accelerated electron events. Current sheet events occur over regions with weak or no crustal fields, have the highest electron energy fluxes, and are likely located on draped magnetotail fields. Extended events occur over regions with moderate crustal magnetic fields, and are most often observed on closed magnetic field lines. Localized events have the lowest energy fluxes, occur in strong magnetic cusp regions, and are the most likely kind of event to be found on open magnetic field lines. Some localized events have clear signatures of field-aligned currents; these events have much higher electron fluxes, and are preferentially observed on radially oriented open magnetic field lines. Electron acceleration events, especially localized events, are similar in many ways to events observed in the terrestrial auroral zone. However, physical processes related to those found in the terrestrial cusp and/or plasmasheet could also be responsible for accelerating electrons at Mars.  相似文献   
480.
Observations carried out from the coronagraphs on board space missions (LASCO/SOHO, Solar Maximum and Skylab) and ground-based facilities (HAO/Mauna Loa Observatory) show that coronal mass ejections (CMEs) can be classified into two classes based on their kinematics evolution. These two classes of CMEs are so-called fast and slow CMEs. The fast CME starts with a high initial speed that remains more or less constant; it is also called the constant-speed CME. On the other hand, the slow CME starts with a low initial speed, but shows a gradual acceleration; it is also called the accelerated and slow CME. Low and Zhang [Astrophys. J. 564, L53–L56, 2002] suggested that these two classes of CMEs could be a result of a difference in the initial topology of the magnetic fields associated with the underlying quiescent prominences. A normal prominence magnetic field topology will lead to a fast CME, while an inverse quiescent prominence results in a slow CME, because of the nature of the magnetic reconnection processes. In a recent study given by Wu et al. [Solar Phys. 225, 157–175, 2004], it was shown that an inverse quiescent prominence magnetic topology also could produce a fast CME. In this study, we perform a numerical MHD simulation for CMEs occurring in both normal and inverse quiescent prominence magnetic topology. This study demonstrates three major physical processes responsible for destabilization of these two types of prominence magnetic field topologies that can launch CMEs. These three initiation processes are identical to those used by Wu et al. [Solar Phys. 225, 157–175, 2004]. The simulations show that both fast and slow CMEs can be initiated from these two different types of magnetic topologies. However, the normal quiescent prominence magnetic topology does show the possibility for launching a reconnection island (or secondary O-line) that might be thought of as a “CME’’.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号