首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1339篇
  免费   120篇
  国内免费   60篇
航空   343篇
航天技术   956篇
综合类   36篇
航天   184篇
  2024年   1篇
  2023年   36篇
  2022年   21篇
  2021年   66篇
  2020年   47篇
  2019年   54篇
  2018年   51篇
  2017年   28篇
  2016年   32篇
  2015年   26篇
  2014年   101篇
  2013年   72篇
  2012年   74篇
  2011年   100篇
  2010年   85篇
  2009年   101篇
  2008年   101篇
  2007年   65篇
  2006年   33篇
  2005年   86篇
  2004年   35篇
  2003年   20篇
  2002年   29篇
  2001年   26篇
  2000年   30篇
  1999年   21篇
  1998年   30篇
  1997年   29篇
  1996年   15篇
  1995年   14篇
  1994年   32篇
  1993年   11篇
  1992年   20篇
  1991年   10篇
  1990年   11篇
  1989年   4篇
  1988年   1篇
  1987年   1篇
排序方式: 共有1519条查询结果,搜索用时 15 毫秒
871.
在电场理论中电轴法的基础上 ,导出了局部场域的电容计算式 ,为电容传感器在精密测量中的应用提供了理论依据 ,这为经典的电轴法开辟了新的应用领域并给出了几种粗糙度等级的被测表面的近似值与精确计算结果的对比。  相似文献   
872.
太阳活动变化分析   总被引:5,自引:0,他引:5  
利用Morlet小波变换方法对太阳黑子相对数进行了分析,对太阳活动变化得出了一些有意义的结果.太阳活动存在10.7 a和101 a的变化周期,以10.7 a周期最为显著.太阳活动强弱变化存在一定的阶段性,在1950年发生了气候突变,之后太阳活动明显加强,未来一段时间太阳活动较弱.   相似文献   
873.
采用的预报模式是一种全连接的BP网络模型,利用太阳风及行星际磁场的观测数据预报AE指数.神经网络输入选用ACE卫星数据,取5 min平均值,通过比较,选用4个预报参量.构造了预报参量时续为20 min,40 min和60 min依次递增的三个网络,分别进行训练和预测,并对行星际参量对AE指数影响的时续性进行了探讨.预报结果表明,全连接BP神经网络在AE指数的短期预报中是比较有效的,同时还提出了需要进一步改进的环节.   相似文献   
874.
航空发动机转子遥测系统旋转电源变换器   总被引:2,自引:0,他引:2  
针对航空发动机转子遥测系统中旋转测量设备的电能获取问题,提出了一种基于反激式开关电源原理的可旋转电源变换器技术方案。该电源变换器通过罐形磁芯建立旋转变压器在转子和静子之间的磁路。设计了输出功率最大为10 W的电源变换器。验证了变压器的磁路不受旋转工况的影响。试验并分析了空气隙的大小、旋转偏心等因素对电源变换器性能的影响。所设计的电源变换器能够以非接触方式向发动机转子传输电能。相对于导电滑环等转子遥测系统供电方式,这种电源变换器具有使用寿命不受限制、工作转速范围大的优点。  相似文献   
875.
PROBA-3 is a space mission of the European Space Agency that will test, and validate metrology and control systems for autonomous formation flying of two independent satellites. PROBA-3 will operate in a High Elliptic Orbit and when approaching the apogee at 6·104 Km, the two spacecraft will align to realize a giant externally occulted coronagraph named ASPIICS, with the telescope on one satellite and the external occulter on the other one, at inter-satellite distance of 144.3 m. The formation will be maintained over 6 hrs across the apogee transit and during this time different validation operations will be performed to confirm the effectiveness of the formation flying metrology concept, the metrology control systems and algorithms, and the spacecraft manoeuvring. The observation of the Sun’s Corona in the field of view [1.08;3.0]RSun will represent the scientific tool to confirm the formation flying alignment. In this paper, we review the mission concept and we describe the Shadow Position Sensors (SPS), one of the metrological systems designed to provide high accuracy (sub-millimetre level) absolute and relative alignment measurement of the formation flying. The metrology algorithm developed to convert the SPS measurements in lateral and longitudinal movement estimation is also described and the measurement budget summarized.  相似文献   
876.
This paper introduces a linear model for spacecraft formation dynamics subject to attitude-dependent solar radiation pressure (SRP) disturbance, with the SRP model accounting for both absorption and specular/diffuse reflection. Spacecraft attitude is represented in modified Rodriguez parameters (MRPs), which also parameterize the orientation of individual facets for a spacecraft with fixed geometry. Compared to earlier work, this model incorporates analytic approximation of the SRP-perturbed chief orbit behavior in a manner enabling its use in applications with infrequent guidance updates. Control examples are shown for single-plate representations of hypothetical spacecraft with generally realistic optical parameters. The results demonstrate the validity of the model and the feasibility of SRP-based formation and rendezvous control in orbits around small bodies and in high orbits around the Earth such as the GEO belt.  相似文献   
877.
Highly efficient low-thrust propulsion is increasingly applied beyond commercial use, also in mainstream and flagship science missions, in combination with gravity assist propulsion. Another recent development is the growth of small spacecraft solutions, not in size but in numbers and individual capabilities.Just over ten years ago, the DLR-ESTEC Gossamer Roadmap to Solar Sailing was set up to guide technology developments towards a propellant-less and highly efficient class of spacecraft for solar system exploration and applications missions: small spacecraft solar sails designed for carefree handling and equipped with carried application modules.Soon, in three dedicated Gossamer Roadmap Science Working Groups it initiated studies of missions uniquely feasible with solar sails such as Displaced L1 (DL1) space weather advance warning and monitoring, Solar Polar Orbiter (SPO) delivery to very high inclination heliocentric orbit, and multiple Near-Earth Asteroid (NEA) rendezvous (MNR). Together, they demonstrate the capability of near-term solar sails to achieve at least in the inner solar system almost any kind of heliocentric orbit within 10 years, from the Earth-co-orbital to the extremely inclined, eccentric and even retrograde. Noted as part of the MNR study, sail-propelled head-on retrograde kinetic impactors (RKI) go to this extreme to achieve the highest possible specific kinetic energy for the deflection of hazardous asteroids.At DLR, the experience gained in the development of deployable membrane structures leading up to the successful ground deployment test of a (20 m)2, i.e., 20 m by 20 m square solar sail at DLR Cologne in 1999 was revitalized and directed towards a 3-step small spacecraft development line from as-soon-as-possible sail deployment demonstration (Gossamer-1) via in-flight evaluation of sail attitude control actuators (Gossamer-2) to an envisaged proving-the-principle flight in the Earth-Moon system (Gossamer-3). First, it turned the concept of solar sail deployment on its head by introducing four separable Boom Sail Deployment Units (BSDU) to be discarded after deployment, enabling lightweight 3-axis stabilized sailcraft. By 2015, this effort culminated in the ground-qualified technology of the DLR Gossamer-1 deployment demonstrator Engineering Qualification Model (EQM). For mission types using separable payloads, such as SPO, MNR and RKI, design concepts can be derived from the BSDU characteristic of DLR Gossamer solar sail technology which share elements with the separation systems of asteroid nanolanders like MASCOT. These nano-spacecraft are an ideal match for solar sails in micro-spacecraft format whose launch configurations are compatible with ESPA and ASAP secondary payload platforms.Like any roadmap, this one contained much more than the planned route from departure to destination and the much shorter distance actually travelled. It is full of lanes, narrow and wide, detours and shortcuts, options and decision branches. Some became the path taken on which we previously reported. More were explored along the originally planned path or as new sidings in search of better options when circumstance changed and the project had to take another turn. But none were dead ends, they just faced the inevitable changes when roadmaps face realities and they were no longer part of the road ahead. To us, they were valuable lessons learned or options up our sleeves. But for future sailors they may be on their road ahead.  相似文献   
878.
The presence of coronal holes in solar disk plays an important role in influencing the space weather and generation of the solar wind. As such there lies a requirement in proper study and prediction of coronal holes occurs in the solar disk. This, in turn, arises the necessity of detection of coronal holes present in the solar disk. In this work, a Hough transformed inspired fuzzy-energy simulated dual contours-based segmentation technique has been proposed for the detection and extraction of holes in solar disk. In the proposed method Hough transform has been induced to initialize the contour for the contour-based method of segmentation. In the algorithm, two contours (active and static) have been initiated and made to evolve based on the energy function by incorporating the gray-scale intensity. Here in the work one contour is made to deform its shape while the other contour is kept static for the coronal holes detection purpose. The experiment has been carried out on few benchmark datasets and the corresponding outcomes have been compared with the results of other existing algorithms. The comparison results highlight the performance of the proposed technique in detection of coronal holes in solar disk.  相似文献   
879.
The Advanced Composition Explorer (ACE) spacecraft has measured 235 solar-based interplanetary (IP) shock waves between the years of 1998–2014. These were composed of 203 fast forward (FF), 6 slow forward (SF), 21 fast reverse (FR) and 5 slow reverse (SR) type shocks. These data can be obtained from the Interplanetary Shock Database of Harvard-Smithsonian Centre for Astrophysics. The Solar Section of American Association of Variable Star Observers (AAVSO) is an organization that counts the number of the sunspots. The effects of interplanetary shock waves on some physical parameters can be computed using a hydrodynamical model. There should be some correlations between these effects and the sunspot variations. The major objective of this paper is twofold. The first one is to search these correlations with sunspots given in the database of AAVSO. As expected, high correlations between physical parameters and sunspots have been obtained and these are presented in tables below. The second objective is to make an estimation of these parameters for the 22nd solar cycle and the years between 2015 and 2018 using an artificial neural network. Predictions have been made for these years where no shock data is present using artificial intelligence. The correlations were observed to increase further when these prediction results were included.  相似文献   
880.
The trends in foF2 are analyzed based on the data of Juliusruh and Boulder ionospheric stations. It is shown that using the traditional solar activity index F10.7 leads to an impossible trend in foF2 when the data for the 24th solar activity cycle are included into the analysis. It is assumed that the F10.7 index does not describe correctly the solar ultraviolet radiation variations in that cycle. A correction of this index using the Rz (sunspot number) and Ly (intensity of the Lyman-α line in the solar spectrum) is performed, and it is shown that in that case reasonable values of the foF2 trends are obtained.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号