首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1278篇
  免费   175篇
  国内免费   48篇
航空   247篇
航天技术   1042篇
综合类   35篇
航天   177篇
  2024年   12篇
  2023年   34篇
  2022年   24篇
  2021年   71篇
  2020年   62篇
  2019年   59篇
  2018年   60篇
  2017年   26篇
  2016年   29篇
  2015年   22篇
  2014年   99篇
  2013年   71篇
  2012年   70篇
  2011年   97篇
  2010年   79篇
  2009年   101篇
  2008年   94篇
  2007年   57篇
  2006年   34篇
  2005年   78篇
  2004年   30篇
  2003年   18篇
  2002年   21篇
  2001年   24篇
  2000年   25篇
  1999年   22篇
  1998年   28篇
  1997年   25篇
  1996年   15篇
  1995年   20篇
  1994年   37篇
  1993年   13篇
  1992年   17篇
  1991年   10篇
  1990年   10篇
  1989年   5篇
  1987年   1篇
  1986年   1篇
排序方式: 共有1501条查询结果,搜索用时 15 毫秒
851.
    
针对行车环境下列车晃动和环境噪声对钢轨磨耗测量的影响,提出了一种轨腰小圆弧自动提取方法,实现了钢轨轮廓的高精度配准。首先,提出了基于截断残差直方图的多项式拟合方法,寻找廓形最优拟合曲线,降低了噪声对轮廓拟合的影响;然后,针对拟合曲线的曲率分布特征,提出了基于动态窗口的最大曲率熵区间搜索算法实现轨腰小圆弧的自动分割;最后,基于两侧轨腰小圆弧拟合2个圆心作为匹配基准点,实现钢轨测量轮廓与标准设计轮廓的对齐配准。静态实验结果表明,该方法的系统测量误差均值和标准差都控制在0.01 mm之内,具有较小的测量误差和良好的重复性。现场动态测量也验证了该方法在行车环境下的重复性精度,多次测量结果的重复性良好,钢轨磨耗动态测量偏差控制在0.2 mm以内。  相似文献   
852.
太阳帆航天器研究及其关键技术综述   总被引:1,自引:0,他引:1  
综述了国内外关于太阳帆航天器的研究成果。介绍了太阳帆航天器的构型与材料、姿态控制、轨道控制及任务分析、试验验证及动力学仿真分析等的研究进展,讨论了太阳帆航天器轻质高强度帆体、折叠储存与展开控制、结构设计、姿态控制、地面试验及在轨演示验证,以及测试与诊断等关键技术,分析了未来太阳帆航天器的发展趋势。  相似文献   
853.
利用SOHO/MDI全日面纵向磁图, 计算了三个描述太阳活动区磁场复杂性和非势性的特征物理量, 即纵向磁场最大水平梯度Bz, 强梯度中性线长度L, 孤立奇点数目η. 为检验太阳光球磁场特征在质子事件短期预报中是否有效, 采用BP神经网络方法, 建立了基于这三个磁场特征物理量简单的太阳质子事件短期(24h)预报模型. 模 型在对2002年和2003年连续两年的样本检测中, 有很高的准确率(2002年和2003年 分别为90 %, 87.54 %)和较高的 质子事件报准率(2002年和2003年分别为60 %, 75 %),从而为光球磁场特征物理量作为质子事件预报的有效因子提供了依据.  相似文献   
854.
The footpoint motions of flare hard X-ray (HXR) sources are directly related to the reconnection scenario of a solar flare. In this work, we tried to extract the information of footpoint motions for a number of flares observed with RHESSI. We found that the RHESSI flare results of the footpoint motions strongly support the classification proposed from the observations of YOHKOH/HXT. Furthermore, it is found that a flare can consist of two types of footpoint motions. We discussed the connections of the footpoint motions with the two-dimensional reconnection models.  相似文献   
855.
The ionospheric total electron content (TEC) in the northern hemispheric equatorial ionospheric anomaly (EIA) region is studied by analyzing dual-frequency signals of the Global Position System (GPS) acquired from a chain of nine observational sites clustered around Taiwan (21.9–26.2°N, 118.4–112.6°E). In this study, we present results from a statistical study of seasonal and geomagnetic effects on the EIA during solar cycle 23: 1994–2003. It is found that TEC at equatorial anomaly crests yield their maximum values during the vernal and autumnal months and their minimum values during the summer (except 1998). Using monthly averaged Ic (magnitude of TEC at the northern anomaly crest), semi-annual variations is seen clearly with two maxima occurring in both spring and autumn. In addition, Ic is found to be greater in winter than in summer. Statistically monthly values of Ic were poorly correlated with the monthly Dst index (r = −0.22) but were well correlated with the solar emission F10.7 index (r = 0.87) for the entire database for the period during 1994–2003. In contrast, monthly values of Ic were correlated better with Dst (r ? 0.72) than with F10.7 (r ? 0.56) in every year during the low solar activity period (1994–1997). It suggests that the effect of solar activity on Ic is a longer term (years), whereas the effect of geomagnetic activity on Ic is a shorter term (months).  相似文献   
856.
Understanding the physics of the various disturbances in the solar wind is critical to successful forecasts of space weather. The STEREO mission promises to bring us new and deeper understanding of these disturbances. As we stand on the threshold of the first results from this mission, it is appropriate to review what we know about solar wind disturbances. Because of their complementary nature we discuss both the disturbances that arise within the solar wind due to the stream structure and coronal mass ejecta and the disturbances that arise when the solar wind collides with planetary obstacles, such as magnetospheres.  相似文献   
857.
We analyzed the dynamics of global electron content (GEC) for the period 1998–2005 and compared the estimated GEC with variations of the 10.7-cm solar radio emission and with and with GEC values obtained with IRI-2001. We found a strong resemblance between the curves’ shapes for the experimental and modeled GEC: strong semiannual variations are discernible in these series and both curves tend to increase the absolute GEC value during the period of maximum of solar activity. However, there are some significant distinctions, such as absence of 27-day fluctuations in the series of GEC computed by the IRI-2001. On the contrary, observational GEC reflects well dynamics of solar activity: 27-day variations of GEC are very similar to the ones of the index F10.7, but GEC undergoes a lagging of about of 30–60 h as compared to value of the F10.7 index. The relative amplitude of 27-day variations decreases from 8% at the rising and falling solar activity to 2% at the period of its maximum.  相似文献   
858.
We have developed a real-time global MHD (magnetohydrodynamics) simulation of the solar wind interaction with the earth’s magnetosphere. By adopting the real-time solar wind parameters and interplanetary magnetic field (IMF) observed routinely by the ACE (Advanced Composition Explorer) spacecraft, responses of the magnetosphere are calculated with MHD code. The simulation is carried out routinely on the super computer system at National Institute of Information and Communications Technology (NICT), Japan. The visualized images of the magnetic field lines around the earth, pressure distribution on the meridian plane, and the conductivity of the polar ionosphere, can be referred to on the web site (http://www2.nict.go.jp/y/y223/simulation/realtime/).The results show that various magnetospheric activities are almost reproduced qualitatively. They also give us information how geomagnetic disturbances develop in the magnetosphere in relation with the ionosphere. From the viewpoint of space weather, the real-time simulation helps us to understand the whole image in the current condition of the magnetosphere. To evaluate the simulation results, we compare the AE indices derived from the simulation and observations. The simulation and observation agree well for quiet days and isolated substorm cases in general.  相似文献   
859.
Solar particle events leading to important increase of particle fluxes at energies of order of magnitude ranging from MeV to GeV constitute an important hazard for space missions. They may lead to effects seen in microelectronics or damage to solar cells and constitute a potential hazard for manned missions. Cumulative damage is commonly expressed as a function of fluence which is defined as the integral of the flux over time. A priori deterministic estimates of the expected fluence cannot be made because over the time scale of a space mission, the fluence can be dominated by the contribution of a few rare and unpredictable high intensity events. Therefore, statistical approaches are required in order to estimate fluences likely to be encountered by a space mission in advance. This paper extends work done by Rosenqvist et al. [Rosenqvist, L., Hilgers, A., Evans, H., Daly, E., Hapgood, M., Stamper, R., Zwickl, R., Bourdarie, S., Boscher, D. Toolkit for updating interplanetary proton-cumulated fluence models. J. Spacecraft Rockets, 42(6), 1077–1090, 2005] to describe an updated predictive engineering model for the proton interplanetary fluence with energies >30 MeV. This model is derived from a complete list of solar proton fluences based on data from a number of calibrated sources covering almost three solar cycles.  相似文献   
860.
Voyager 1 crossed the solar wind termination shock on December 16, 2004 at a distance of 94 AU from the Sun, to become the first spacecraft to explore the termination shock region and to enter the heliosheath, the final heliospheric frontier. By the end of 2006, Voyager 1 will be at ∼101 AU, with Voyager 2 at ∼81 AU and still approaching the termination shock. Both spacecraft have been observing the modulation of galactic and anomalous cosmic rays since their launch in 1977. The recent observations close to or inside the heliosheath have provided several interesting ‘surprises’ with subsequent theoretical and modeling challenges. Examples are: what does the modulation of galactic cosmic rays amount to in this region?; how do the anomalous cosmic rays get accelerated and modulated?; why are there ‘breaks’ in the power-law slopes of the spectra of accelerated particles? Several numerical models have been applied to most of these topics over the years and comprehensive global predictions have been made the past decade, thought to be based on reasonable assumptions about the termination shock and the heliosheath. Examples of these predictions and assumptions are concisely discussed within the context of the main observed features of cosmic rays in the vicinity of the termination shock, ending with a discussion of some of the issues and challenges to cosmic ray modeling in particular.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号