首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1267篇
  免费   167篇
  国内免费   44篇
航空   235篇
航天技术   1037篇
综合类   29篇
航天   177篇
  2024年   4篇
  2023年   33篇
  2022年   22篇
  2021年   71篇
  2020年   59篇
  2019年   57篇
  2018年   58篇
  2017年   26篇
  2016年   26篇
  2015年   22篇
  2014年   99篇
  2013年   70篇
  2012年   69篇
  2011年   97篇
  2010年   79篇
  2009年   101篇
  2008年   94篇
  2007年   57篇
  2006年   34篇
  2005年   78篇
  2004年   30篇
  2003年   18篇
  2002年   21篇
  2001年   24篇
  2000年   25篇
  1999年   22篇
  1998年   28篇
  1997年   25篇
  1996年   15篇
  1995年   20篇
  1994年   37篇
  1993年   13篇
  1992年   17篇
  1991年   10篇
  1990年   10篇
  1989年   5篇
  1987年   1篇
  1986年   1篇
排序方式: 共有1478条查询结果,搜索用时 15 毫秒
331.
With the installation of a new module and the relocation of three other modules, including multiple hand-offs from the station arm (SSRMS) to the shuttle arm (SRMS), International Space Station (ISS) assembly mission 10A/STS-120 was anticipated to be one of the most complicated ISS assembly missions ever attempted. The assembly operations became even more complex when a solar array wing (SAW) on the relocated Port-6 (P6) truss segment ripped while being extended. Repairing the torn SAW became the single most important objective for the remainder of STS-120, with future ISS assembly missions threatened by reduced power generation capacity if the SAW could not be repaired. Precise coordination between the space shuttle and ISS robotics teams led to an operational concept that combined the capabilities of the SRMS and SSRMS robotic systems in ways far beyond their original design capacities. Benefits of consistent standards for ISS robotic interfaces have been previously identified, but the advantages of having two such versatile and compatible robotic systems have never been quite so spectacular. This paper describes the role of robotics in the emergency SAW repair and highlights how versatility within space robotics systems can allow operations far beyond the intended design scenarios.  相似文献   
332.
The average mass of dust per volume in space equals that of the solar wind so that the interplanetary medium should provide an obvious region to study dust plasma interactions. While dust collective behavior is typically not observed in the interplanetary medium, the dust component rather consists of isolated grains screened by and interacting with the plasma. Space measurements have revealed several phenomena possibly resulting from dust plasma interactions, but most of the dust plasma interactions are at present not quantified. Examples are the production of neutrals and pick-up ions from the dust, dust impact generated field variations at spacecraft and magnetic field variations possibly caused by solar wind interacting with dust trails. Since dust particles carry a surface charge, they are exposed to the Lorentz force in the interplanetary magnetic field and for grains of sub-micrometer sizes acceleration can be substantial.  相似文献   
333.
Peak fluxes are an important property of gradual solar energetic particle (SEP) event time profiles from both astro/heliophysical and applications perspectives. However, the peak flux in an event may occur at the event onset, or at the time of the interplanetary shock arrival (the ESP or energetic storm particles). This makes an important difference in the interpretation of the peak flux, and in any attempts to characterize or model it. This paper describes a study of SEP data sets from ACE, IMP-8 and GOES toward determining the relative properties of these peak fluxes for protons with energies near 1, 10, and 50 MeV. The results suggest that for gradual events with both peaks, the ESP peak often dominates at 1 MeV energies and is dominant about half the time at 10 MeV. Moreover, the prompt peak fluxes can be used to estimate the shock peak (ESP event) up to days ahead, especially in the lower energy range.  相似文献   
334.
X-ray flares and acceleration processes are in one complex of sporadic solar events (together with CMEs, radio bursts, magnetic field dissipation and reconnection). This supposes the connection (if not physical, but at least statistical) between characteristics of the solar energetic proton events and flares. The statistical analysis indicates that probability and magnitude of the near-Earth proton enhancement depends heavily on the flare importance and their heliolongitude. These relations may be used for elaboration of the forecasting models, which allow us to calculate probability of the solar proton events from the X-ray observations.  相似文献   
335.
In computer codes used to estimate the aircrew radiation exposure from galactic cosmic radiation, a quiet sun model is usually assumed. A revised computer code (PCAIRE ver. 8.0f) is used to calculate the impact of noisy sun conditions on aircrew radiation exposure. The revised code incorporates the effect of solar storm activity, which can perturb the geomagnetic field lines, altering cutoff rigidities and hence the shielding capability of the Earth’s magnetic field. The effect of typical solar storm conditions on aircrew radiation exposure is shown to be minimal justifying the usual assumptions.  相似文献   
336.
This paper summarizes the results of numerical experiments to determine the sensitivity of the final attitude of an inflatable solar sail with vanes after deployment to various parameters affecting the deployment process. These parameters are: in- and out-of-plane asymmetries during deployment, length inflation profile, and vane deployment failures. We show how robust the sail deployment is to geometric asymmetries before a 35° off-Sun angle is reached. Differential delays in the time to inflate the booms and a boom sweep-back angle affect the stability favorably. Adjacent vane failures to deploy affect the stability unfavorably, while the failure of opposing vanes is acceptable. Realistic boom length rate profiles obtained during ground tests are used in the simulation showing that failing adjacent vanes in conjunction with initial inflation delays in adjacent booms represent the worst case. We also demonstrate that by feeding back attitude and attitude rate measurements so that a corrective action is taken during the deployment, the final attitude can be maintained very close to the initial attitude, thus mitigating the attitude changes incurred during deployment.  相似文献   
337.
We demonstrate that the general features of the radial and azimuthal components of the anisotropy of galactic cosmic rays can be studied by the harmonic analysis method using data from an individual neutron monitor with cut off rigidity <5 GV. In particular, we study the characteristics of the 27-day (solar rotation period) variations of the galactic cosmic ray intensity and anisotropy, solar wind velocity, interplanetary magnetic field strength and sunspot number. The amplitudes of the 27-day variations of the galactic cosmic ray anisotropy are greater, and the phases more clearly established, in A > 0 polarity periods than in A < 0 polarity periods at times of minimum solar activity. The phases of the 27-day variations of the galactic cosmic rays intensity and anisotropy are opposite with respect to the similar changes of the solar wind velocity in A > 0 polarity periods. No significant dependence of the amplitude of the 27-day variation of the galactic cosmic ray anisotropy on the tilt angle of the heliospheric neutral sheet is found. Daily epicyclegrams obtained by Chree’s method show that the 27-day variations of the galactic cosmic ray anisotropy during A > 0 polarity periods follow elliptical paths with the major axes oriented approximately along the interplanetary magnetic field. The paths are more irregular during A < 0 polarity periods.  相似文献   
338.
The Space Weather Explorer – KuaFu mission will provide simultaneous, long-term, and synoptic observations of the complete chain of disturbances from the solar atmosphere to the geospace. KuaFu-A (located at the L1 liberation point) includes Coronal Dynamics Imagers composed of a Lyman-α coronagraph (from 1.15 to 2.7 solar radii) and a white light coronagraph (out to 15 solar radii), in order to identify the initial sources of Coronal Mass Ejections (CMEs) and their acceleration profiles. The difficulty of observing the lower corona should not be underestimated since instrumental stray light remains a critical issue in the visible because of the low contrast of the corona with respect to the Sun. Observing the corona in the Lyman-α line is a valid alternative to white light observations. This approach takes advantage of both the intrinsic higher contrast of the corona with respect to the solar disk in this line compared to the visible, and the absence of F-corona at 121.6 nm. Furthermore, it has been convincingly shown that the coronal structures seen in Lyman-α correspond to those seen in the visible and which result from Thomson scattering of the coronal ionized gas. This is because the plasma is still collisional in the lower corona so that the hydrogen neutral atoms are coupled to the protons. A classical, all-reflecting internally-occulted Lyot coronagraph is required so as to preserve the image quality down to the inner limit of the field-of-view. A narrow band interference filter located in a collimated beam allows isolating the Lyman-α line. The visible coronagraph will adopt the approach of a single instrument having a large field-of-view extending from 2.5 to 15 solar radii. Such a design is based on refractive externally-occulted coronagraphs built for recent past missions, essentially the LASCO-C2 and C3 instruments and the SECCHI/COR 2 of the STEREO mission, which is itself a combination of the C2 and C3 instruments.  相似文献   
339.
Several important issues are open in the field of solar variability and they wait their solution which up to now was attempted using critical ground-based instrumentations. However, accurate photometric data are attainable only from space. New observational material should be collected with high enough spatial and spectral resolution, covering the whole visible range of the electromagnetic spectrum as well infrared and ultraviolet to reconstruct the total solar irradiance: (1) the absolute contributions of different small-scale structural entities of the solar atmosphere from the white light flares and from micro-flares are still poorly known; (2) we do not know the absolute contributions of different structural elements of the solar atmosphere to the long-term and to the cyclic variations of the solar irradiance, including features of the polar regions of the Sun; (3) the variations of the chromospheric magnetic network are still poorly evaluated; (4) only scarce information is available about the spectral variations of different small-scale features in the high photosphere. Variability of the Sun in white light can be studied with higher spectral, spatial and time resolution using space-born telescopes, which are more appropriate for this purpose than ground based observatories because of better seeing conditions, no interference of the terrestrial atmosphere and a more precise calibration procedure. Scientific requirements for such observations and the possible experimental tools proposed for their solution. Suggested solar studies have broader astrophysical importance.  相似文献   
340.
Dynamic processes in the interplanetary space have been investigated using time variations in time parameters of the cosmic-ray rigidity spectrum. Change of heliosphere electromagnetic characteristics has been found out to precede sporadic phenomena on the Sun. In particular, it is shown that sporadic phenomena are followed by generation of local polarization electric fields, decrease of the magnetic-field strength in small-scale heliospheric structures, and increase of the potential difference between the pole and the plane of the ecliptic. These features allow prediction of solar proton events in advance (from several hours to several tens of hours) with a high degree of confirmation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号