首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1084篇
  免费   61篇
  国内免费   14篇
航空   131篇
航天技术   901篇
综合类   4篇
航天   123篇
  2023年   30篇
  2022年   9篇
  2021年   57篇
  2020年   30篇
  2019年   36篇
  2018年   39篇
  2017年   7篇
  2016年   7篇
  2015年   12篇
  2014年   75篇
  2013年   59篇
  2012年   58篇
  2011年   79篇
  2010年   66篇
  2009年   89篇
  2008年   91篇
  2007年   56篇
  2006年   31篇
  2005年   73篇
  2004年   25篇
  2003年   14篇
  2002年   17篇
  2001年   18篇
  2000年   19篇
  1999年   12篇
  1998年   24篇
  1997年   22篇
  1996年   10篇
  1995年   12篇
  1994年   34篇
  1993年   10篇
  1992年   15篇
  1991年   10篇
  1990年   9篇
  1989年   3篇
  1987年   1篇
排序方式: 共有1159条查询结果,搜索用时 15 毫秒
201.
The cosmic ray ground level enhancement on January 20, 2005 is among the largest recorded events in the history of cosmic ray measurements. The solar protons of MeV energies cause an excess of ionization in the atmosphere, specifically over polar caps following major solar disturbances. The ionization effect in the Earth atmosphere is obtained for various latitudes on the basis of solar proton energy spectra, reconstructed from GOES 11 measurements and subsequent full Monte Carlo simulation of cosmic ray induced atmospheric cascade. The estimation of ionization rates is based on a numerical model for cosmic ray induced ionization. The evolution of atmospheric cascade is performed with the CORSIKA 6.52 code using FLUKA 2006b and QGSJET II hadron interaction models. The atmospheric ion rate ionization is explicitly obtained for 40°N, 60°N and 80°N latitudes. The time evolution of obtained ion rates is presented. It is demonstrated that ionization effect is negative for 40°N and small for 60°N, because of accompanying Forbush decrease. The ionization effect is significant only in sub-polar and polar atmosphere during the major ground level enhancement of 20 January 2005.  相似文献   
202.
We consider a special relativistic effect, known as the Poynting–Robertson effect, on various types of trajectories of solar sails. Since this effect occurs at order v?/c, where v? is the transversal speed relative to the sun, it can dominate over other special relativistic effects, which occur at order v2/c2. While solar radiation can be used to propel the solar sail, the absorbed portion of it also gives rise to a drag force in the transversal direction. For escape trajectories, this diminishes the cruising velocity, which can have a cumulative effect on the heliocentric distance. For a solar sail directly facing the sun in a bound orbit, the Poynting–Robertson effect decreases its orbital speed, thereby causing it to slowly spiral towards the sun. We also consider this effect for non-Keplerian orbits in which the solar sail is tilted in the azimuthal direction. While in principle the drag force could be counter-balanced by an extremely small tilt of the solar sail in the polar direction, periodic adjustments are more feasible.  相似文献   
203.
The ability to observe meteorological events in the polar regions of the Earth from satellite celebrated an anniversary, with the launch of TIROS-I in a pseudo-polar orbit on 1 April 1960. Yet, after 50 years, polar orbiting satellites are still the best view of the polar regions of the Earth. The luxuries of geostationary satellite orbit including rapid scan operations, feature tracking, and atmospheric motion vectors (or cloud drift winds), are enjoyed only by the middle and tropical latitudes or perhaps only cover the deep polar regions in the case of satellite derived winds from polar orbit. The prospect of a solar sailing satellite system in an Artificial Lagrange Orbit (ALO, also known as “pole sitters”) offers the opportunity for polar environmental remote sensing, communications, forecasting and space weather monitoring. While there are other orbital possibilities to achieve this goal, an ALO satellite system offers one of the best analogs to the geostationary satellite system for routine polar latitude observations.  相似文献   
204.
辐照不均匀性是太阳模拟器的一项主要技术指标.首先通过对国内外辐照不均匀性测量装置进行了充分的调研,决定采用“决门法”设计完成了辐照不均匀性的测量装置.接着通过试验证明了晴空无遮挡的太阳光可以作为该装置的标准光源并进行了该装置的标定.然后,利用该装置对自然光源进行了测试,结果与利用标准表测试一致.最后,利用该装置对脉冲式太阳模拟器的辐照不均匀性进行了现场测试.  相似文献   
205.
There are two ways of external forcing of the lower ionosphere, the region below an altitude of about 100 km: (1) From above, which is directly or indirectly of solar origin. (2) From below, which is directly or indirectly of atmospheric origin. The external forcing of solar origin consists of two general factors – solar ionizing radiation variability and space weather. The solar ionization variability consist mainly from the 11-year solar cycle, the 27-day solar rotation and solar flares, strong flares being very important phenomenon in the daytime lower ionosphere due to the enormous increase of the solar X-ray flux resulting in temporal terminating of MF and partly LF and HF radio wave propagation due to heavy absorption of radio waves. Monitoring of the sudden ionospheric disturbances (SIDs – effects of solar flares in the lower ionosphere) served in the past as an important tool of monitoring the solar activity and its impacts on the ionosphere. Space weather effects on the lower ionosphere consist of many different but often inter-related phenomena, which govern the lower ionosphere variability at high latitudes, particularly at night. The most important space weather phenomenon for the lower ionosphere is strong geomagnetic storms, which affect substantially both the high- and mid-latitude lower ionosphere. As for forcing from below, it is caused mainly by waves in the neutral atmosphere, i.e. planetary, tidal, gravity and infrasonic waves. The most important and most studied waves are planetary and gravity waves. Another channel of the troposphere coupling to the lower ionosphere is through lightning-related processes leading to sprites, blue jets etc. and their ionospheric counterparts. These phenomena occur on very short time scales. The external forcing of the lower ionosphere has observationally been studied using predominantly ground-based methods exploiting in various ways the radio wave propagation, and by sporadic rocket soundings. All the above phenomena are briefly mentioned and some of them are treated in more detail.  相似文献   
206.
Close to the current solar activity minimum, two large solar cosmic ray ground-level enhancements (GLE) were recorded by the worldwide network of neutron monitors (NM). The enormous GLE on 20 January 2005 is the largest increase observed since the famous GLE in 1956, and the solar cosmic-ray event recorded on 13 December 2006 is among the largest in solar cycle 23. From the recordings of the NMs during the two GLEs, we determined the characteristics of the solar particle flux near Earth.  相似文献   
207.
Almost 10 years of solar submillimeter observations have shown new aspects of solar activity, such as the presence of rapid solar spikes associated with the launch of coronal mass ejections and an increasing submillimeter spectral component in flares. We analyse the singular microwave–submillimeter spectrum of an M class solar flare on 20 December, 2002. Flux density observations measured by Sun patrol telescopes and the Solar Submillimeter Telescope are used to build the radio spectrum, which is fitted using Ramaty’s code. At submillimeter frequencies the spectrum shows a component different from the microwave classical burst. The fitting is achieved proposing two homogeneous sources of emission. This theoretical fitting is in agreement with differential precipitation through a magnetically asymmetric loop or set of loops. From a coronal magnetic field model we infer an asymmetric magnetic structure at the flare location. The model proposed to quantify the differential precipitation rates due to the asymmetry results in a total precipitation ratio Q2/Q1≈104–105, where Q1(Q2) represents the total precipitation in the loop foot with the high (low) magnetic field intensity. This ratio agrees with the electron total number ratio of the two sources proposed to fit the radio spectrum.  相似文献   
208.
This review focuses on the processes that energize and trigger M- and X-class solar flares and associated flux-rope destabilizations. Numerical modeling of specific solar regions is hampered by uncertain coronal-field reconstructions and by poorly understood magnetic reconnection; these limitations result in uncertain estimates of field topology, energy, and helicity. The primary advances in understanding field destabilizations therefore come from the combination of generic numerical experiments with interpretation of sets of observations. These suggest a critical role for the emergence of twisted flux ropes into pre-existing strong field for many, if not all, of the active regions that produce M- or X-class flares. The flux and internal twist of the emerging ropes appear to play as important a role in determining whether an eruption will develop predominantly as flare, confined eruption, or CME, as do the properties of the embedding field. Based on reviewed literature, I outline a scenario for major flares and eruptions that combines flux-rope emergence, mass draining, near-surface reconnection, and the interaction with the surrounding field. Whether deterministic forecasting is in principle possible remains to be seen: to date no reliable such forecasts can be made. Large-sample studies based on long-duration, comprehensive observations of active regions from their emergence through their flaring phase are needed to help us better understand these complex phenomena.  相似文献   
209.
Mixtures of molecular nitrogen and methane have been identified in numerous outer Solar Systemices including the icy surfaces of Pluto and Triton. We have simulated the interaction of ionizing radiation in the Solar System by carrying out a radiolysis experiment on a methane – molecular nitrogen ice mixture with energetic electrons. We have identified the hydrogen cyanide molecule as the most prominent carbon–nitrogen-bearing reaction product formed. Upon warming the irradiated sample, we followed for the first time the kinetics and temporal evolution of the underlying acid–base chemistry which resulted in the formation of the cyanide ion from hydrogen cyanide. On the surfaces of Triton and Pluto and on comets in Oort’s cloud this sort of complex chemistry is likely to occur. In particular, hydrogen cyanide can be produced in low temperature environments (Oort cloud comets) and may be converted into cyanide ions once the comets reach the warmer regions of the Solar System.  相似文献   
210.
The potential for exposure to large solar particle events (SPEs) with high energy levels is a major concern during interplanetary transfer and extra-vehicular activities (EVAs) on the lunar and Mars surface. Previously, we have used data from the last 5 solar cycles to estimate percentiles of dose to a typical blood-forming organ (BFO) for a hypothetical astronaut in a nominally shielded spacecraft during a 120-d lunar mission. As part of this process, we made use of complete energy spectra for 34 large historical SPEs to calculate what the BFO mGy-Eq dose would have been in the above lunar scenario for each SPE. From these calculated doses, we then developed a prediction model for BFO dose based solely on an assumed value of integrated fluence above 30 MeV (Φ30) for an otherwise unspecified future SPE. In this study, we reasoned that since BFO dose is determined more by protons with higher energies than by those with lower energies, more accurate BFO dose prediction models could be developed using integrated fluence above 60 (Φ60) and above 100 MeV (Φ100) as predictors instead of Φ30. However to calculate the unconditional probability of a BFO dose exceeding a pre-specified limit (“BFO dose risk”), one must also take into account the distribution of the predictor (Φ30,Φ60, or Φ100), as estimated from historical SPEs. But Φ60 and Φ100 have more variability, and less available historical information on which to estimate their distributions over many SPE occurrences, than does Φ30. Therefore, when estimating BFO dose risk there is a tradeoff between increased BFO dose prediction at a given energy threshold and decreased accuracy of models for describing the distribution of that threshold over future SPEs as the threshold increases. Even when taking the second of these two factors into account, we still arrived at the conclusion that overall prediction improves as the energy level threshold increases from 30 to 60 to 100 MeV. These results can be applied to the development of approaches to improve radiation protection of astronauts and the optimization of mission planning for future space missions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号