首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1041篇
  免费   62篇
  国内免费   14篇
航空   105篇
航天技术   884篇
综合类   4篇
航天   124篇
  2024年   2篇
  2023年   30篇
  2022年   9篇
  2021年   57篇
  2020年   30篇
  2019年   33篇
  2018年   37篇
  2017年   7篇
  2016年   7篇
  2015年   12篇
  2014年   74篇
  2013年   59篇
  2012年   55篇
  2011年   79篇
  2010年   66篇
  2009年   87篇
  2008年   89篇
  2007年   47篇
  2006年   24篇
  2005年   71篇
  2004年   25篇
  2003年   10篇
  2002年   16篇
  2001年   18篇
  2000年   19篇
  1999年   12篇
  1998年   23篇
  1997年   23篇
  1996年   9篇
  1995年   12篇
  1994年   28篇
  1993年   9篇
  1992年   15篇
  1991年   10篇
  1990年   9篇
  1989年   3篇
  1987年   1篇
排序方式: 共有1117条查询结果,搜索用时 281 毫秒
441.
We analyzed the dynamics of global electron content (GEC) for the period 1998–2005 and compared the estimated GEC with variations of the 10.7-cm solar radio emission and with and with GEC values obtained with IRI-2001. We found a strong resemblance between the curves’ shapes for the experimental and modeled GEC: strong semiannual variations are discernible in these series and both curves tend to increase the absolute GEC value during the period of maximum of solar activity. However, there are some significant distinctions, such as absence of 27-day fluctuations in the series of GEC computed by the IRI-2001. On the contrary, observational GEC reflects well dynamics of solar activity: 27-day variations of GEC are very similar to the ones of the index F10.7, but GEC undergoes a lagging of about of 30–60 h as compared to value of the F10.7 index. The relative amplitude of 27-day variations decreases from 8% at the rising and falling solar activity to 2% at the period of its maximum.  相似文献   
442.
Time-dependent kinetic-continuum model of the solar wind interaction with the two-component local interstellar cloud (LIC) has been developed recently [Izmodenov, V., Malama, Y.G., Ruderman, M.S. Solar cycle influence on the interaction of the solar wind with local interstellar cloud. Astron. Astrophys. 429, 1069–1080, 2005a.]. Here, we adopted this model to the realistic solar cycle, when the solar wind parameters at the Earth’s orbit are taken from space data. This paper focuses on the results related to the termination shock (TS) excursion with the solar cycle that may help to understand Voyager 1 data obtained at and after the crossing of the termination shock and to predict the time of the TS crossing by Voyager 2.  相似文献   
443.
The continual monitoring of the low Earth orbit (LEO) debris environment using highly sensitive radars is essential for an accurate characterization of these dynamic populations. Debris populations are continually evolving since there are new debris sources, previously unrecognized debris sources, and debris loss mechanisms that are dependent on the dynamic space environment. Such radar data are used to supplement, update, and validate existing orbital debris models. NASA has been utilizing radar observations of the debris environment for over a decade from three complementary radars: the NASA JPL Goldstone radar, the MIT Lincoln Laboratory (MIT/LL) Long Range Imaging Radar (known as the Haystack radar), and the MIT/LL Haystack Auxiliary radar (HAX). All of these systems are highly sensitive radars that operate in a fixed staring mode to statistically sample orbital debris in the LEO environment. Each of these radars is ideally suited to measure debris within a specific size region. The Goldstone radar generally observes objects with sizes from 2 mm to 1 cm. The Haystack radar generally measures from 5 mm to several meters. The HAX radar generally measures from 2 cm to several meters. These overlapping size regions allow a continuous measurement of cumulative debris flux versus diameter from 2 mm to several meters for a given altitude window. This is demonstrated for all three radars by comparing the debris flux versus diameter over 200 km altitude windows for 3 nonconsecutive years from 1998 to 2003. These years correspond to periods before, during, and after the peak of the last solar cycle. Comparing the year to year flux from Haystack for each of these altitude regions indicate statistically significant changes in subsets of the debris populations. Potential causes of these changes are discussed. These analysis results include error bars that represent statistical sampling errors.  相似文献   
444.
Using long-term (1998--2009) total electron content (TEC) measurements from the GPS global network including dense network of GPS sites in USA and Japan, we have obtained the first data regarding the spatio-temporal structure and the statistics of medium-scale traveling wave packets (MS TWPs) excited by the solar terminator (ST). Total amount of the detected TWPs exceeds 565,000. There is no correlation between TWPs occurrence and geomagnetic and solar activity. We found that the diurnal, seasonal and spectral MS TWPs characteristics are specified by the solar terminator (ST) dynamics. MS TWPs are the chains of narrow-band TEC oscillations with single packet’s duration of about 1–2 h and oscillation periods of 10–20 min. The total duration of chain is about 4–6 h. The MS TWPs spatial structure is characterized by a high degree of anisotropy and coherence at the distance of more than 10 wavelengths. Occurrence rate of daytime MS TWPs is high in winter and during equinoxes. Occurrence rate of nighttime MS TWPs has its peak in summer. These features are consistent with previous MS travelling ionosphere disturbance (TID) statistics obtained from 630-nm airglow imaging observations in Japan. In winter, MS TWPs in the northern hemisphere are observed 3–4 h after the morning ST passage. In summer, MS TWPs are detected 1.5–2 h before the evening ST appearance at the point of observations, but at the moment of the evening ST passage in the magneto-conjugate point. The obtained results are the first experimental evidence for the hypothesis of the ST-generated ion sound waves.  相似文献   
445.
The issue of predicting solar flares is one of the most fundamental in physics, addressing issues of plasma physics, high-energy physics, and modelling of complex systems. It also poses societal consequences, with our ever-increasing need for accurate space weather forecasts. Solar flares arise naturally as a competition between an input (flux emergence and rearrangement) in the photosphere and an output (electrical current build up and resistive dissipation) in the corona. Although initially localised, this redistribution affects neighbouring regions and an avalanche occurs resulting in large scale eruptions of plasma, particles, and magnetic field. As flares are powered from the stressed field rooted in the photosphere, a study of the photospheric magnetic complexity can be used to both predict activity and understand the physics of the magnetic field. The magnetic energy spectrum and multifractal spectrum are highlighted as two possible approaches to this.  相似文献   
446.
Possible reasons for the temporal instability of long-term effects of solar activity (SA) and galactic cosmic ray (GCR) variations on the lower atmosphere circulation were studied. It was shown that the detected earlier ∼60-year oscillations of the amplitude and sign of SA/GCR effects on the troposphere pressure at high and middle latitudes (Veretenenko and Ogurtsov, Adv.Space Res., 2012) are closely related to the state of a cyclonic vortex forming in the polar stratosphere. The intensity of the vortex was found to reveal a roughly 60-year periodicity affecting the evolution of the large-scale atmospheric circulation and the character of SA/GCR effects. An intensification of both Arctic anticyclones and mid-latitudinal cyclones associated with an increase of GCR fluxes at minima of the 11-year solar cycles is observed in the epochs of a strong polar vortex. In the epochs of a weak polar vortex SA/GCR effects on the development of baric systems at middle and high latitudes were found to change the sign. The results obtained provide evidence that the mechanism of solar activity and cosmic ray influences on the lower atmosphere circulation involves changes in the evolution of the stratospheric polar vortex.  相似文献   
447.
The SOLar-STellar Irradiance Comparison Experiment (SOLSTICE) on the SOlar Radiation and Climate Experiment (SORCE) has been measuring the solar spectral irradiance on a daily basis since early 2003. This time period includes near-solar maximum conditions, the Halloween storms of 2003, and solar minimum conditions. These results can be compared to observations from the SOLSTICE I experiment that flew on the Upper Atmosphere Research Satellite (UARS) during the decline of the previous solar cycle as well as with currently operating missions. We will discuss similarities and differences between the two solar cycles in the long-term ultraviolet irradiance record.  相似文献   
448.
Solar particle events leading to important increase of particle fluxes at energies of order of magnitude ranging from MeV to GeV constitute an important hazard for space missions. They may lead to effects seen in microelectronics or damage to solar cells and constitute a potential hazard for manned missions. Cumulative damage is commonly expressed as a function of fluence which is defined as the integral of the flux over time. A priori deterministic estimates of the expected fluence cannot be made because over the time scale of a space mission, the fluence can be dominated by the contribution of a few rare and unpredictable high intensity events. Therefore, statistical approaches are required in order to estimate fluences likely to be encountered by a space mission in advance. This paper extends work done by Rosenqvist et al. [Rosenqvist, L., Hilgers, A., Evans, H., Daly, E., Hapgood, M., Stamper, R., Zwickl, R., Bourdarie, S., Boscher, D. Toolkit for updating interplanetary proton-cumulated fluence models. J. Spacecraft Rockets, 42(6), 1077–1090, 2005] to describe an updated predictive engineering model for the proton interplanetary fluence with energies >30 MeV. This model is derived from a complete list of solar proton fluences based on data from a number of calibrated sources covering almost three solar cycles.  相似文献   
449.
Space solar power (SSP) has been broadly defined as the collection of solar energy in space and its wireless transmission for use on earth. This approach potentially gives the benefit of provision of baseload power while avoiding the losses due to the day/night cycle and tropospheric effects that are associated with terrestrial solar power. Proponents have contended that the implementation of such systems could offer energy security, environmental, and technological advantages to those who would undertake their development. Among recent implementations commonly proposed for SSP, the modular symmetrical concentrator (MSC) and other modular concepts have received considerable attention. Each employs an array of modules for performing conversion of concentrated sunlight into microwaves or laser beams for transmission to earth. While prototypes of such modules have been designed and developed previously by several groups, none have been subjected to the challenging conditions inherent to the space environment and the possible solar concentration levels in which an array of modules might be required to operate. The research described herein details our team's efforts in the development of photovoltaic arrays, power electronics, microwave conversion electronics, and antennas for microwave-based “sandwich” module prototypes. The implementation status and testing results of the prototypes are reviewed.  相似文献   
450.
In deep space manned missions for the exploration and exploitation of celestial bodies of Solar System astronauts are not shielded by the terrestrial magnetic field and must be protected against the action of Solar Cosmic Rays (SCRs) and Galactic Cosmic Rays (GCRs). SCRs are sporadically emitted, and in very rare but possible events, their fluence can be so high to be lethal to a unprotected crew. Their relatively low energy allows us to conceive fully passive shields, also if active systems can somewhat reduce the needed mass penalty. GCRs continuously flow without intensity peaks, and are dangerous to the health and operability of the crew in long duration (>1year) missions. Their very high energy excludes the possible use of passive systems, so that recourse must be made to electromagnetic fields for preventing ionizing particles to reach the habitat where astronauts spend most of their living and working time. A short overview is presented of the many ideas developed in last decades of last century; ideas are mainly based on very intense electrostatic shields, flowing plasma bubbles, or enormous superconducting coil systems for producing high magnetic fields. In the first decade of this century the problem began to be afforded in more realistic scenarios, taking into account the present and foreseeable possibilities of launchers (payload mass, diameter and length of the shroud of the rocket, etc.) and of assembling and/or inflating structures in space. Driving parameters are the volume of the habitat to be protected and the level of mitigation of the radiation dose to be guaranteed to the crew. Superconducting magnet systems based on multi-solenoid complexes or on one huge magnetic torus surrounding the habitat are being evaluated for defining the needed parameters: masses, mechanical structures for supporting the huge magnetic forces, needed equipments and safety systems. Technological tests are in preparation or planned for improving density of the current, lightness and stability, to increase working temperature of superconducting cables, and for finding light supporting structures and suitable safety architectures, delineating a possible development program for affording this difficult problem.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号