首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1063篇
  免费   120篇
  国内免费   17篇
航空   105篇
航天技术   967篇
综合类   4篇
航天   124篇
  2024年   2篇
  2023年   30篇
  2022年   19篇
  2021年   65篇
  2020年   36篇
  2019年   38篇
  2018年   48篇
  2017年   13篇
  2016年   15篇
  2015年   14篇
  2014年   81篇
  2013年   68篇
  2012年   57篇
  2011年   81篇
  2010年   68篇
  2009年   89篇
  2008年   89篇
  2007年   47篇
  2006年   25篇
  2005年   71篇
  2004年   25篇
  2003年   10篇
  2002年   16篇
  2001年   18篇
  2000年   19篇
  1999年   13篇
  1998年   23篇
  1997年   23篇
  1996年   9篇
  1995年   12篇
  1994年   29篇
  1993年   9篇
  1992年   15篇
  1991年   10篇
  1990年   9篇
  1989年   3篇
  1987年   1篇
排序方式: 共有1200条查询结果,搜索用时 15 毫秒
361.
The aim of this paper is to quantify the performance of a flat solar sail to perform a double angular momentum reversal maneuver and produce a new class of two-dimensional, non-Keplerian orbits in the ecliptic plane. For a given pair of orbital parameters, the orbital period and the perihelion distance, it is possible to find the minimum solar sail characteristic acceleration required to fulfil a double angular momentum reversal trajectory. This problem is addressed using an optimal formulation and is solved through an indirect approach. The new trajectories are symmetrical with respect to the sun-perihelion line and exhibit a bean-like shape. Two main difficulties must be properly taken into account. On one side the sail is required to perform a rapid reorientation maneuver when it approaches the perihelion. Suitable simulations have shown that such a maneuver is feasible. In the second place the new trajectories require the use of high performance solar sails. For example, assuming an orbital period equal to 5 years, the required solar sail characteristic acceleration is greater than 3.4 mm/s2. Such a value, although beyond the currently available sail performance, is comparable to what is required by the original concept of H-reversal maneuvers introduced by Vulpetti in 1996.  相似文献   
362.
Recently, there has been a renewed interest in Solar Sails as an alternative means of space propulsion. Many different attitude control systems have been designed for Solar Sails taking advantage of the centre-of-mass (CM)/centre-of-pressure (CP) offset while utilising the main sail structure to position the actuators. However, by attaching actuators to the main sail, these systems increase the risks involved in the deployment subsystem.  相似文献   
363.
The aim of the study is to explore whether age at death from cardiovascular diseases depends on solar and geomagnetic activities. The data were collected for 1970–1978 in Novosibirsk, West Siberia, for industrial workers of Siberian origin. The Spearman correlations are computed between linearly detrended lifespan and daily or monthly physical variables to establish immediate (lag, L = 0), delayed (L = 1–3 days) and cumulative (L = ±30 days) influences. Significant correlations ranging from r = −0.26 to r = −0.30 for L from 0 to 3, respectively, are found for men between solar radio flux at wavelength 10.7 cm and age at death from acute myocardial infarction (AMI) but not from acute heart failure, ischemic heart disease and stroke. For AMI, women’s longevity displays an opposite (direct) association with the average solar character occurred at the calendar month of death. The index of geomagnetic activity, Ap, exhibits inverse association with longevity for the AMI stratum for both sexes. GLM univariate procedure revealed higher contribution of Ap to the variance of lifespan compared to season of death. The individual age at death susceptibility to cosmic influences is found to depend upon solar activity at year of birth. It is concluded that associations between the lifespan for cardiovascular decedents and the indices of solar and geomagnetic activities at time of death and of birth are cause-of-death- and sex-specific.  相似文献   
364.
The remote X-ray fluorescence spectroscopy is a powerful technique to investigate the elemental abundances in the atmosphere-less planetary bodies. The experiment involves measuring spectra of fluorescent X-rays from lunar surface using a low energy X-ray detector onboard an orbiting satellite. Since the flux of fluorescent X-ray lines critically depend on the flux and spectrum of the incident solar X-rays, it is essential to have simultaneous and accurate measurement of X-ray from both Moon and Sun. In the context of Moon, this technique has been employed since early days of space exploration to determine elemental composition of lunar surface. However, so far it has not been possible to exploit it to its full potential due to various reasons. Therefore it is planned to continue the remote X-ray fluorescence spectroscopy experiment on-board Chandrayaan-2 which includes both lunar X-ray observations and solar X-ray observations as two separate payloads. The lunar X-ray observations will be carried out by Chandra Large Area Soft x-ray Spectrometer (CLASS) experiment; whereas the solar X-ray observations will be carried out by a separate payload, Solar X-ray Monitor (XSM). Here we present the overall design of the XSM instrument, the present development status as well as preliminary results of the laboratory model testing. XSM instrument will have two packages namely – XSM sensor package and XSM electronics package. XSM will accurately measure spectrum of Solar X-rays in the energy range of 1–15 keV with energy resolution ∼200 eV @ 5.9 keV. This will be achieved by using state-of-the-art Silicon Drift Detector (SDD), which has a unique capability of maintaining high energy resolution at very high incident count rate expected from Solar X-rays. XSM onboard Chandrayaan-2 will be the first experiment to use such detector for Solar X-ray monitoring.  相似文献   
365.
The tendency of iodine to be mobilised during secondary processing is reflected both in the presence of 129XeXS in secondary minerals and in the bulk 129XeXS/I ratios in meteorites. Comparison of absolute ages derived through calibration of chronometers based on 129Xe, 53Mn and 26Al against the Pb-Pb system yields a plausible timescale for the early solar system. In this system, the earliest chondrule ages are most readily interpreted as representing formation after the beginning of parent body processing. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
366.
Observations made with the two Voyager spacecraft confirmed that the solar wind decelerates to form the heliospheric termination shock. Voyager 1 crossed this termination shock at ∼94 AU in 2004, while Voyager 2 crossed it in 2007 at a different heliolatitude, about 10 AU closer to the Sun. These different positions of the termination shock confirm the dynamic and cyclic nature of the shock’s position. Observations from the two Voyager spacecraft inside the heliosheath indicate significant differences between them, suggesting that apart from the dynamic nature caused by changing solar activity there also may exist a global asymmetry in the north–south (polar) dimensions of the heliosphere, in addition to the expected nose–tail asymmetry. This relates to the direction in which the heliosphere is moving in interstellar space and its orientation with respect to the interstellar magnetic field. In this paper we focus on illustrating the effects of this north–south asymmetry on modulation of galactic cosmic ray Carbon, between polar angles of 55° and 125°, using a numerical model which includes all four major modulation processes, the termination shock and the heliosheath. This asymmetry is incorporated in the model by assuming a significant dependence on heliolatitude of the thickness of the heliosheath. When comparing the computed spectra between the two polar angles, we find that at energies E < ∼1.0 GeV the effects of the assumed asymmetry on the modulated spectra are insignificant up to 60 AU from the Sun but become increasingly more significant with larger radial distances to reach a maximum inside the heliosheath. In contrast, with E > ∼1.0 GeV, these effects remain insignificant throughout the heliosphere even very close to the heliopause. Furthermore, we find that a higher local interstellar spectrum for Carbon enhances the effects of asymmetric modulation between the two polar angles at lower energies (E < ∼300 MeV). In conclusion, it is found that north–south asymmetrical effects on the modulation of cosmic ray Carbon depend strongly on the extent of the geometrical asymmetry of the heliosheath together with the assumed value of the local interstellar spectrum.  相似文献   
367.
The concept of a pole-sitter has been under investigation for many years, showing the capability of a low-thrust propulsion system to maintain a spacecraft at a static position along a planet’s polar axis. From such a position, the spacecraft has a view of the planet’s polar regions equivalent to that of the low- and mid-latitudes from geostationary orbit. Previous work has hinted at the existence of pole-sitters that would only require a solar sail to provide the necessary propulsive thrust if a slight deviation from a position exactly along the polar axis is allowed, without compromising on the continuous view of the planet’s polar region (a so-called quasi-pole-sitter). This paper conducts a further in-depth analysis of these high-potential solar-sail-only quasi-pole-sitters and presents a full end-to-end trajectory design: from launch and transfer to orbit design and orbit control. The results are the next steppingstone towards strengthening the feasibility and utility of these orbits for continuous planetary polar observation.  相似文献   
368.
The 3-step Gossamer road map to solar sailing is presented that has been agreed between DLR and ESA in November 2009. The main and exclusive purpose of that project is to develop, to prove, and to demonstrate the solar sail technology as a safe and reliably manageable propulsion technique for long lasting and deep space missions. Since the development of the solar sail technology is quite a complex task, presently at the DLR implemented solar sail related research activities will be presented as well.  相似文献   
369.
对SiC纤维的CVD涂层工艺进行研究.实验发现采用BCl3,H2及CH4作为反应气体,采用与SiC纤维生产工艺相匹配的走丝速度并控制一定的工艺参数,在1350℃左右可得到厚度2~3mm且表面致密的B4C涂层,纤维涂层后性能基本保持不变.仅采用BCl3及CH4作为CVD涂层工艺反应气体,在1180~1250℃即可沉积出表面光滑致密,厚度2~3mm的富碳B4C涂层,涂层后纤维性能可提高10%左右,且涂层与纤维结合强度很高,优于B4C涂层与SiC纤维的结合强度.实验还发现SiC纤维涂覆B4C及富碳B4C涂层后,能有效阻隔界面反应,可大幅提高SiC/Ti基复合材料的性能.  相似文献   
370.
The RV-2N-series instruments onboard Luna missions and the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) instrument onboard Lunar Reconnaissance Orbiter (LRO) were designed to characterize the global lunar radiation environment and its biological impacts by measuring cosmic ray (CR) intensity. In this study, we have shown that the RV-2N-series instruments onboard of Russian Luna missions and the CRaTER reliably detect both background CRs and solar proton events (SPEs) in the lunar radiation environment using the proton intensity measured by the RV-2N-series onboard Luna missions out of the Russian Luna program for the exploration of the Moon (November 1970–August 1975) and the CR intensity on the Moon observed by the CRaTER (June 2009–March 2011). Those were compared with the CR intensities observed by neutron monitors (McMurdo, Thule, Oulu) on the Earth. The sunspot number is used as the index of solar activity (NOAA National Geophysical Data Center). As a result, the background CR intensities on the Moon turned out to have a good anti-correlation with the solar activity. We have also identified the proton intensity increasing events on the Moon which have the similar profiles to those observed by neutron monitors on the Earth. Most of these events show the significant increase of proton intensities in the lunar radiation environment when the SPEs associated with solar eruptions are verified. Therefore, most of the proton intensity increasing events are associated with the energetic solar particles in the lunar environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号