全文获取类型
收费全文 | 1061篇 |
免费 | 143篇 |
国内免费 | 6篇 |
专业分类
航空 | 105篇 |
航天技术 | 978篇 |
综合类 | 4篇 |
航天 | 123篇 |
出版年
2025年 | 1篇 |
2024年 | 7篇 |
2023年 | 39篇 |
2022年 | 19篇 |
2021年 | 65篇 |
2020年 | 36篇 |
2019年 | 38篇 |
2018年 | 48篇 |
2017年 | 13篇 |
2016年 | 15篇 |
2015年 | 14篇 |
2014年 | 81篇 |
2013年 | 68篇 |
2012年 | 57篇 |
2011年 | 81篇 |
2010年 | 68篇 |
2009年 | 89篇 |
2008年 | 88篇 |
2007年 | 47篇 |
2006年 | 23篇 |
2005年 | 70篇 |
2004年 | 25篇 |
2003年 | 10篇 |
2002年 | 16篇 |
2001年 | 18篇 |
2000年 | 19篇 |
1999年 | 13篇 |
1998年 | 23篇 |
1997年 | 22篇 |
1996年 | 9篇 |
1995年 | 12篇 |
1994年 | 29篇 |
1993年 | 9篇 |
1992年 | 15篇 |
1991年 | 10篇 |
1990年 | 9篇 |
1989年 | 3篇 |
1987年 | 1篇 |
排序方式: 共有1210条查询结果,搜索用时 15 毫秒
891.
A. Gil M.V. Alania 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
We show that the amplitudes of the 27-day variations of galactic cosmic ray (GCR) intensity, solar wind and solar activity parameters have a periodicity with duration of three to four Carrington rotation periods (3–4 CRP). We assume that the general reason for this phenomenon may be related to similar cyclicity of topological structure of the solar magnetic field lines created owing to the asymmetry of turbulent solar dynamo and solar differential rotation transforming the Sun’s poloidal magnetic field to the toroidal (α–ω effect), and vice versa. 相似文献
892.
R.N. Boroyev 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2019,63(1):302-308
In the present paper dependences of substorm activity on the solar wind velocity and southward component (Bz) of interplanetary magnetic field (IMF) during the main phase of magnetic storms, induced by the CIR and ICME events, is studied. Strong magnetic storms with close values of Dstmin?≈??100?±?10?nT are considered. For the period of 1979–2017 there are selected 26 magnetic storms induced by the CIR and ICME (MC?+?Ejecta) events. It is shown that for the CIR and ICME events the average value of the AE index (AEaver) at the main phase of magnetic storm correlates with the solar wind electric field. The highest correlation coefficient (r?=?0.73) is observed for the magnetic storms induced by the CIR events. It is found that the AEaver for magnetic storms induced by ICME events, unlike CIR events, increases with the growth of average value of the southward IMF Bz module. The analysis of dependence between the AEaver and average value of the solar wind velocity (Vswaver) during the main phase of magnetic storm shows that in the CIR events, unlike ICME, the AEaver correlates on the Vswaver. 相似文献
893.
航天器异常与空间环境 总被引:3,自引:0,他引:3
本文研究考查了靠近或在地球同步轨道上的SCATHA、TDRS-1卫星以及GPS、GOES卫星组等的各自10年左右运行时间中,空间环境所导致航天器异常的发生率的年分布特征,月分布特征,地方时分布特征以及不同类型的发生率分布特征。结果表明,由于不同空间环境因素对航天器作用不同,引起异常类型不一样,因此,太阳长周期和短月,地方时周期活动对航天器异常发生率影响无简单的统一规律特征;长周期中的单粒子事件是由 相似文献
894.
Recent advances in observations and modeling of the solar ultraviolet and X-ray spectral irradiance 总被引:1,自引:0,他引:1
Thomas N. Woods 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
There have been significant, recent advances in understanding the solar ultraviolet (UV) and X-ray spectral irradiance from several different satellite missions and from new efforts in modeling the variations of the solar spectral irradiance. The recent satellite missions with solar UV and X-ray spectral irradiance observations include the X-ray Sensor (XRS) aboard the series of NOAA GOES spacecraft, the Upper Atmosphere Research Satellite (UARS), the SOHO Solar EUV Monitor (SEM), the Solar XUV Photometers (SXP) on the Student Nitric Oxide Explorer (SNOE), the Solar EUV Experiment (SEE) aboard the Thermosphere, Ionosphere, Mesosphere, Dynamics, and Energetics (TIMED) satellite, and the Solar Radiation and Climate Experiment (SORCE) satellite. The combination of these measurements is providing new results on the variability of the solar ultraviolet irradiance throughout the ultraviolet range shortward of 200 nm and over a wide range of time scales ranging from years to seconds. The solar UV variations of flares are especially important for space weather applications and upper atmosphere research, and the period of intense solar storms in October–November 2003 has provided a wealth of new information about solar flares. The new efforts in modeling these solar UV spectral irradiance variations range from simple empirical models that use solar proxies to more complicated physics-based models that use emission measure techniques. These new models provide better understanding and insight into why the solar UV irradiance varies, and they can be used at times when solar observations are not available for atmospheric studies. 相似文献
895.
利用Helios2飞船的数据,对太阳风速度分布中质子束流部分与整个质子的密度之比随日心距离的变化做了分析.为了排除碰撞因素的影响,有针对性地分析了太阳风高速流(600相似文献
896.
897.
898.
GAN Weiqun 《空间科学学报》2016,36(5):636-638
The activities of Chinese space solar physics in 2014—2016 were mainly undertaken within the framework of Strategic Priority Program on Space Science, sponsored by CAS, which include:to accomplish the last version for the mid and long-term (2016—2030) plan of Chinese space solar physics;to subsidy a few of pre-study projects of space solar physics;to implement two intensive study projects, ASO-S and SPORT. This paper summarizes these activities briefly. 相似文献
899.
Great progress has been made in the research of solar corona and interplanetary physics by the Chinese scientists during the past two years (2014-2016). Nearly 100 papers were published in this area. In this report, we will give a brief review to these progresses. The investigations include:solar corona, solar wind and turbulence, superhalo electron and energetic particle in the inner heliosphere, solar flares and radio bursts, Coronal Mass Ejections (CMEs) and their interplanetary counterparts, Magnetohydrodynamic (MHD) numerical modeling, CME/shock arrival time prediction, magnetic reconnection, solar variability and its impact on climate. These achievements help us to better understand the evolution of solar activities, solar eruptions, their propagations in the heliosphere, and potential geoeffectiveness. They were achieved by the Chinese solar and space scientists independently or via international collaborations. 相似文献
900.
In this review, we discuss the structure and dynamics of the magnetospheric Low-Latitude Boundary Layer (LLBL) based on recent results from multi-satellite missions Cluster and Double Star. This boundary layer, adjacent to the magnetopause on the magnetospheric side, usually consists of a mixture of plasma of magnetospheric and magnetosheath origins, and plays an important role in the transfer of mass and energy from the solar wind into the magnetosphere and subsequent magnetospheric dynamics. During southward Interplanetary Magnetic Field (IMF) conditions, this boundary layer is generally considered to be formed as a result of the reconnection process between the IMF and magnetospheric magnetic field lines at the dayside magnetopause, and the structure and plasma properties inside the LLBL can be understood in terms of the time history since the reconnection process. During northward IMF conditions, the LLBL is usually thicker, and has more complex structure and topology. Recent observations confirm that the LLBL observed at the dayside can be formed by single lobe reconnection, dual lobe reconnection, or by sequential dual lobe reconnection, as well as partially by localized cross-field diffusion. The LLBL magnetic topology and plasma signatures inside the different sub-layers formed by these processes are discussed in this review. The role of the Kelvin-Helmholtz instability in the formation of the LLBL at the flank magnetopause is also discussed. Overall, we conclude that the LLBL observed at the flanks can be formed by the combination of processes, (dual) lobe reconnection and plasma mixing due to non-linear Kelvin-Helmholtz waves. 相似文献