全文获取类型
收费全文 | 1058篇 |
免费 | 119篇 |
国内免费 | 17篇 |
专业分类
航空 | 102篇 |
航天技术 | 965篇 |
综合类 | 4篇 |
航天 | 123篇 |
出版年
2024年 | 1篇 |
2023年 | 30篇 |
2022年 | 19篇 |
2021年 | 65篇 |
2020年 | 36篇 |
2019年 | 38篇 |
2018年 | 48篇 |
2017年 | 13篇 |
2016年 | 15篇 |
2015年 | 14篇 |
2014年 | 81篇 |
2013年 | 68篇 |
2012年 | 57篇 |
2011年 | 81篇 |
2010年 | 68篇 |
2009年 | 89篇 |
2008年 | 88篇 |
2007年 | 47篇 |
2006年 | 23篇 |
2005年 | 70篇 |
2004年 | 25篇 |
2003年 | 10篇 |
2002年 | 16篇 |
2001年 | 18篇 |
2000年 | 19篇 |
1999年 | 13篇 |
1998年 | 23篇 |
1997年 | 22篇 |
1996年 | 9篇 |
1995年 | 12篇 |
1994年 | 29篇 |
1993年 | 9篇 |
1992年 | 15篇 |
1991年 | 10篇 |
1990年 | 9篇 |
1989年 | 3篇 |
1987年 | 1篇 |
排序方式: 共有1194条查询结果,搜索用时 10 毫秒
891.
Ethan R. Burnett Hanspeter Schaub 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2021,67(11):3396-3408
This paper introduces a linear model for spacecraft formation dynamics subject to attitude-dependent solar radiation pressure (SRP) disturbance, with the SRP model accounting for both absorption and specular/diffuse reflection. Spacecraft attitude is represented in modified Rodriguez parameters (MRPs), which also parameterize the orientation of individual facets for a spacecraft with fixed geometry. Compared to earlier work, this model incorporates analytic approximation of the SRP-perturbed chief orbit behavior in a manner enabling its use in applications with infrequent guidance updates. Control examples are shown for single-plate representations of hypothetical spacecraft with generally realistic optical parameters. The results demonstrate the validity of the model and the feasibility of SRP-based formation and rendezvous control in orbits around small bodies and in high orbits around the Earth such as the GEO belt. 相似文献
892.
893.
光压摄动对卫星姿态轨道耦合的影响分析 总被引:1,自引:1,他引:1
随着卫星对地测量精度要求的不断提高, 对卫星轨道的精度要求也随之提高. 目前Topex, Jason-1, Jason-2等一系列海洋测地卫星的轨道计算精度已经达到厘米量级, 相应对卫星动力学模型的要求也越来越精细. 以Topex海洋测地卫星为背景, 考虑卫星帆板有规律的运动, 将其几何形状简化为高精度轨道计算中比较通用的Boxing-Wing模型, 计算了Topex卫星的Boxing-Wing模型在轨运行中受到的太阳光压力及光压力矩. 考虑卫星姿态和轨道耦合的情况下, 计算了太阳光压力及光压力矩对Topex卫星轨道半长轴和卫星姿态的影响. 通过一个轨道周期的计算可知, 光压对卫星轨道半长轴的影响大约为9cm, 对卫星滚动角和俯仰角的影响在6°左右, 因此, 在高精度的轨道计算和姿态控制中这个影响是应该考虑的. 相似文献
894.
A. Gil M.V. Alania 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
We show that the amplitudes of the 27-day variations of galactic cosmic ray (GCR) intensity, solar wind and solar activity parameters have a periodicity with duration of three to four Carrington rotation periods (3–4 CRP). We assume that the general reason for this phenomenon may be related to similar cyclicity of topological structure of the solar magnetic field lines created owing to the asymmetry of turbulent solar dynamo and solar differential rotation transforming the Sun’s poloidal magnetic field to the toroidal (α–ω effect), and vice versa. 相似文献
895.
We present a study of stationary flows in closed solar coronal loops. The hydrodynamic differential equations of plasma flow and energy balance are integrated with algorithms which achieve high reliability. We present here results on the detailed synthesis of loop emission in specific bands and lines, taking into account also non-equilibrium ionization. 相似文献
896.
提出了一种在自旋稳定卫星自旋轴与几何体轴重合或几乎重合时只利用太阳角计算自旋卫星姿态的方法。给出了方法的原理及适用范围。研究表明:定姿精度仅与太敏测量精度有关,减小了传统方法中太敏与地敏两项测量误差产生的误差,方法原理简单、精度高。由实际卫星数据的长期验证可知:方法能在卫星自旋轴与实际几何轴偏差较小时实现快速定姿,定姿结果满足要求。 相似文献
897.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2023,71(5):2240-2251
This study examines the occurrences rate of geomagnetic storms during the solar cycles (SCs) 20–24. It also investigates the solar sources at SCs 23 and 24. The Disturbed storm time (Dst) and Sunspot Number (SSN) data were used in the study. The study establishes that the magnitude of the rate of occurrences of geomagnetic storms is higher (lower) at the descending phases (minimum phases) of solar cycle. It as well reveals that severe and extreme geomagnetic storms (Dst < -250 nT) seldom occur at low solar activity but at very high solar activity and are mostly associated with coronal mass ejections (CMEs) when occurred. Storms caused by CME + CH-HSSW are more prominent during the descending phase than any other phase of the solar cycle. Solar minimum features more CH-HSSW- associated storms than any other phase. It was also revealed that all high intensity geomagnetic storms (strong, severe and extreme) are mostly associated with CMEs. However, CH-HSSW can occasionally generate strong storms during solar minimum. The results have proven that CMEs are the leading cause of geomagnetic storms at the ascending, maximum and the descending phases of the cycles 23 and 24 followed by CME + CH-HSSW. The results from this study indicate that the rate of occurrence of geomagnetic storms could be predicted in SC phases. 相似文献
898.
L.Z. Biktash 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
We have studied conditions in interplanetary space, which can have an influence on galactic cosmic ray (CR) and climate change. In this connection the solar wind and interplanetary magnetic field parameters and cosmic ray variations have been compared with geomagnetic activity represented by the equatorial Dst index from the beginning 1965 to the end of 2012. Dst index is commonly used as the solar wind–magnetosphere–ionosphere interaction characteristic. The important drivers in interplanetary medium which have effect on cosmic rays as CMEs (coronal mass ejections) and CIRs (corotating interaction regions) undergo very strong changes during their propagation to the Earth. Because of this CMEs, coronal holes and the solar spot numbers (SSN) do not adequately reflect peculiarities concerned with the solar wind arrival to 1 AU. Therefore, the geomagnetic indices have some inestimable advantage as continuous series other the irregular solar wind measurements. We have compared the yearly average variations of Dst index and the solar wind parameters with cosmic ray data from Moscow, Climax, and Haleakala neutron monitors during the solar cycles 20–23. The descending phases of these solar cycles (CSs) had the long-lasting solar wind high speed streams occurred frequently and were the primary contributors to the recurrent Dst variations. They also had effects on cosmic rays variations. We show that long-term Dst variations in these solar cycles were correlated with the cosmic ray count rate and can be used for study of CR variations. Global temperature variations in connection with evolution of Dst index and CR variations is discussed. 相似文献
899.
Thomas H. Zurbuchen 《Space Science Reviews》2007,130(1-4):515-526
The extraordinary life and scientific achievements of Johannes Geiss span an almost impossible breadth of scientific topics,
from the study of rocks to tenuous plasmas, from volcanoes to meteorites. But, his impact also extends way beyond the field
of science. Professor Geiss is a well-known teacher and a highly successful science leader whose impact has been felt at the
University of Bern, in Switzerland, and around the globe. We present here a brief summary of this highly successful career
via a pictorial overview and a movie compiled by a former student who had the good luck to work with Professor Geiss during
his years at the University of Bern.
Electronic Supplementary Material The online version of this article () contains supplementary material, which is available to authorized users. 相似文献
900.