首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1036篇
  免费   61篇
  国内免费   14篇
航空   102篇
航天技术   882篇
综合类   4篇
航天   123篇
  2024年   1篇
  2023年   30篇
  2022年   9篇
  2021年   57篇
  2020年   30篇
  2019年   33篇
  2018年   37篇
  2017年   7篇
  2016年   7篇
  2015年   12篇
  2014年   74篇
  2013年   59篇
  2012年   55篇
  2011年   79篇
  2010年   66篇
  2009年   87篇
  2008年   88篇
  2007年   47篇
  2006年   22篇
  2005年   70篇
  2004年   25篇
  2003年   10篇
  2002年   16篇
  2001年   18篇
  2000年   19篇
  1999年   12篇
  1998年   23篇
  1997年   22篇
  1996年   9篇
  1995年   12篇
  1994年   28篇
  1993年   9篇
  1992年   15篇
  1991年   10篇
  1990年   9篇
  1989年   3篇
  1987年   1篇
排序方式: 共有1111条查询结果,搜索用时 468 毫秒
651.
In the last few years, there has been growing interest in near-real-time solar data processing, especially for space weather applications. This is due to space weather impacts on both space-borne and ground-based systems, and industries, which subsequently impacts our lives. In the current study, the deep learning approach is used to establish an automated hybrid computer system for a short-term forecast; it is achieved by using the complexity level of the sunspot group on SDO/HMI Intensitygram images. Furthermore, this suggested system can generate the forecast for solar flare occurrences within the following 24 h. The input data for the proposed system are SDO/HMI full-disk Intensitygram images and SDO/HMI full-disk magnetogram images. System outputs are the “Flare or Non-Flare” of daily flare occurrences (C, M, and X classes). This system integrates an image processing system to automatically detect sunspot groups on SDO/HMI Intensitygram images using active-region data extracted from SDO/HMI magnetogram images (presented by Colak and Qahwaji, 2008) and deep learning to generate these forecasts. Our deep learning-based system is designed to analyze sunspot groups on the solar disk to predict whether this sunspot group is capable of releasing a significant flare or not. Our system introduced in this work is called ASAP_Deep. The deep learning model used in our system is based on the integration of the Convolutional Neural Network (CNN) and Softmax classifier to extract special features from the sunspot group images detected from SDO/HMI (Intensitygram and magnetogram) images. Furthermore, a CNN training scheme based on the integration of a back-propagation algorithm and a mini-batch AdaGrad optimization method is suggested for weight updates and to modify learning rates, respectively. The images of the sunspot regions are cropped automatically by the imaging system and processed using deep learning rules to provide near real-time predictions. The major results of this study are as follows. Firstly, the ASAP_Deep system builds on the ASAP system introduced in Colak and Qahwaji (2009) but improves the system with an updated deep learning-based prediction capability. Secondly, we successfully apply CNN to the sunspot group image without any pre-processing or feature extraction. Thirdly, our system results are considerably better, especially for the false alarm ratio (FAR); this reduces the losses resulting from the protection measures applied by companies. Also, the proposed system achieves a relatively high scores for True Skill Statistics (TSS) and Heidke Skill Score (HSS).  相似文献   
652.
This work investigates the influence of coronal mass ejection (CME) on the time derivatives of horizontal geomagnetic and geoelectric fields, proxy parameters for identifying GICs. 16 events were identified for the year 2003 from the CORONAS-PHOTON spacecraft. Five of the events (May 29, June 9, October 28, October 29, and November 4) were extensively discussed over four magnetic observatories, were analyzed using the time derivatives of the horizontal geomagnetic (dH/dt) and geoelectric (EH) fields obtained from data of the INTERMAGNET network. It was observed that energy distributions of the wavelet power spectrum of the horizontal geoelectric field are noticed at the nighttime on both 29 May and 9 June 2003 across the stations. Daytime and nighttime intensification of energy distribution of the wavelet power spectrum of the horizontal geoelectric field are observed on both 28 and 29 October 2003 due to strong westward electrojet. The 4 November 2003 event depicts daytime amplification of energy distributions of the wavelet power spectrum across the stations. The highest correlation magnitude is obtained in the event of 4 November 2003 between dH/dt and EH relationships during the intense solar flare of class X 17.4. We observed that the correlation magnitude between dH/dt and EH increases with increase in CME activity. We concluded that the response of the surface impedance model for different stations plays a key role in determining the surface electric field strength, due to large electric field changes at different stations.  相似文献   
653.
During the August 25, 2018 geomagnetic storm, the new borne CSES-01 satellite and the Swarm A satellite detected a really large equatorial plasma bubble (EPB) in the post-midnight sector over western Africa. We investigated the features of this deep ionospheric plasma depletion using data from the Langmuir probes on-board CSES-01 and Swarm A satellites, and data from the high-precision magnetometer and the electric field detector instruments on-board CSES-01. Using also plasma and magnetic field data from THEMIS-E satellite we found that, during the passage of the magnetic cloud that drove the geomagnetic storm, an impulsive variation lasting about ten minutes characterized the solar wind (SW) pressure. The analysis of the delay time, between the occurrence of such impulsive variation and the detection of the plasma bubble, suggests a possible link between the SW pressure impulsive variation as identified by THEMIS-E and the generation of the EPB as detected by CSES-01 and Swarm A. We put forward the hypothesis that the SW pressure impulsive variation might have triggered an eastward prompt penetrating electric field that propagated from high to equatorial latitudes, overlapping in the nightside region to the zonal westward electric field, causing either a reduction or an inversion, at the base of the EPB triggering.  相似文献   
654.
The hourly and daily measured clear-sky global solar radiation (G) and biologically important effective erythematic radiation (EER) incident on a horizontal surface at Cairo, Egypt (latitude 30° 05′ N & Longitude 31° 15′ E), during the period from January 1995 to December 2005 are used in this paper. The relationship between daily integrated totals of EER and the daily totals of broadband global solar radiation (250–2800 nm) is established. The temporal variability of the percentage ratio of the total daily erythema to total daily broadband solar global irradiation (EER/G) is determined. The monthly and the seasonal averages of the extraterrestrial UVB solar radiation, Mesurad and estímated UVB solar radiation and clearness index KtUVB of UVB radiation are discussed. The average monthly mean variation of slant ozone (Z) and UVB transmission (KtUVB) at the present work are found. The two variables show an opposite seasonal behavior, and the average monthly of slant ozone column and UVB transmission values shows the relationship between them in a clearer way than those of daily values. The estimated values of UVB solar radiation a good agreement with the measured values of the UVB solar radiation, the difference between the estimated and measured values of UVB solar radiation varies from 1.2% to 2.8%. The effect of the annual cycles of solar zenith angle (SZA) and total column ozone (TCO) on the ratios (EER/G) are presented and the correction factors are determined for removal of the ozone cycle. The seasonal variability of EER/G is also discussed. The effect of the annual cycles of solar zenith angle (SZA) and total column ozone (TCO) on the ratios (EER/G) is presented and the correction factors are determined for removal of the ozone cycle.  相似文献   
655.
A 10.7 cm solar radio flux F10.7, geomagnetic planetary equivalent amplitude (Ap index), and period variations were considered in this paper to construct a linear model for daily averaged ionospheric total electron content (TEC). The correlation coefficient of the modeled results and International GNSS Service (IGS) observables was approximately 0.97, which implied that the model could accurately reflect the realistic variation characteristics of the daily averaged TEC. The influences of the different factors on TEC and its characteristics at different latitudes were examined with this model. Results show that solar activity, annual and semiannual cycles are the three most important factors that affect daily averaged TEC. Solar activity is the primary determinant of TEC during periods with high solar activity, whereas periodic factors primarily contribute to TEC during periods with minimum solar activity. The extent of the influences of the different factors on TEC exhibits obvious differences at varying latitudes. The magnitude of the semiannual variation becomes less significant with the increase in latitude. Furthermore, a geomagnetic storm causes an increase in TEC at low latitudes and a decrease at high latitudes.  相似文献   
656.
We show that the amplitudes of the 27-day variations of galactic cosmic ray (GCR) intensity, solar wind and solar activity parameters have a periodicity with duration of three to four Carrington rotation periods (3–4 CRP). We assume that the general reason for this phenomenon may be related to similar cyclicity of topological structure of the solar magnetic field lines created owing to the asymmetry of turbulent solar dynamo and solar differential rotation transforming the Sun’s poloidal magnetic field to the toroidal (αω effect), and vice versa.  相似文献   
657.
The relationship between active regions (ARs) and coronal mass ejections (CMEs) is studied. For this purpose a statistical analysis of 694 CMEs associated with ARs was carried out. We considered the relationship between properties of the CMEs and ARs characterized using the McIntosh classification. We demonstrated that CMEs are likely to be launched from ARs in the mature phase of their evolution when they have complex magnetic field. The fastest and halo CMEs can be ejected only from the most complex ARs (when an AR is a bipolar group of spots with large asymmetric penumbras around the main spot with many smaller spots in the group). We also showed that the wider events have a tendency to originate from uncomplicated magnetic structures. This tendency was used for estimation of the real angular widths of the halo CMEs. The probability of launching of fast CMEs increases together with increase of the complexity and size of ARs. The widest, but slow, CMEs originate from the simplest magnetic structure which are still able to produce CMEs. Our results could be useful for forecasting of space weather.  相似文献   
658.
王杰  聂云清  吴军  刘望  袁福  邹杰 《宇航学报》2022,43(6):732-742
针对冷热交变环境导致太阳帆内部应力剧烈变化的问题,基于形状记忆合金(SMA)弹簧提出了太阳帆的张拉方案和薄膜应力保持恒定的方法,该方法利用形状记忆合金在高低温下的刚度非线性特性,有效补偿薄膜和支撑杆之间的间隙变化,以使薄膜内部应力基本保持恒定。针对六边形构型太阳帆开展了数值仿真,首先建立了太阳帆的热分析模型和力学分析模型,获取了高低温工况下的温度场。然后通过热致变形分析得到薄膜与支撑杆在高低温工况下的间隙变化,据此确定形状记忆合金弹簧的参数。最后对太阳帆在高低温工况下的薄膜内部应力进行了验证。  相似文献   
659.
The Gravity field and steady-state Ocean Circulation Explorer (GOCE) was the first European Space Agency’s (ESA) Earth Explorer core mission. Through its extremely low, about 260?km above the Earth, circular, sun-synchronous orbit, the satellite gained high spatial resolution and accuracy gravity gradient, and ocean circulation data. Global Positioning System (GPS) receivers, mounted on the spacecraft, allowed the determination of reduced-dynamic and kinematic GOCE orbits, whereas Laser Retroreflector Array (LRA) dedicated to Satellite Laser Ranging (SLR) allowed an independent validation of GPS-derived orbits. In this paper, residuals between different GPS-based orbit types and SLR observations are used to investigate the sensitivity and the influence of solar, geomagnetic, and ionospheric activities on the quality of kinematic and reduced-dynamic GOCE orbits. We also analyze the quality of data provided by individual SLR sites, by detecting time biases using ascending and descending sun-synchronous GOCE orbit passes, and the residual analysis of the measurement characteristics, i.e., the dependency of SLR residuals as a function of nadir and horizontal angles. Results show a substantial vulnerability of kinematic orbit solutions to the solar F10.7 index and the ionospheric activity measured by the variations of the Total Electron Content (TEC) values. The sensitivity of kinematic orbits to the three-hour-range KP index is rather minor. The reduced-dynamic orbits are almost insensitive to indices describing ionospheric, solar, and geomagnetic activities. The investigation of individual SLR sites shows that some of them are affected by time bias errors, whereas other demonstrate systematics, such as a dependency between observation residuals and the satellite nadir angle or the horizontal azimuth angle from the SLR station to the direction of the satellite.  相似文献   
660.
In this work, we present a symplectic integration scheme to numerically compute space debris motion. Such an integrator is particularly suitable to obtain reliable trajectories of objects lying on high orbits, especially geostationary ones. Indeed, it has already been demonstrated that such objects could stay there for hundreds of years. Our model takes into account the Earth’s gravitational potential, luni-solar and planetary gravitational perturbations and direct solar radiation pressure. Based on the analysis of the energy conservation and on a comparison with a high order non-symplectic integrator, we show that our algorithm allows us to use large time steps and keep accurate results. We also propose an innovative method to model Earth’s shadow crossings by means of a smooth shadow function. In the particular framework of symplectic integration, such a function needs to be included analytically in the equations of motion in order to prevent numerical drifts of the energy. For the sake of completeness, both cylindrical shadows and penumbra transitions models are considered. We show that both models are not equivalent and that big discrepancies actually appear between associated orbits, especially for high area-to-mass ratios.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号