首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   0篇
航空   22篇
航天技术   44篇
  2023年   1篇
  2020年   1篇
  2014年   7篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2009年   3篇
  2008年   10篇
  2007年   1篇
  2006年   3篇
  2005年   7篇
  2004年   11篇
  2003年   1篇
  2002年   1篇
  1998年   3篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1984年   9篇
排序方式: 共有66条查询结果,搜索用时 15 毫秒
61.
We investigate the dark matter distributions in the central region of two clusters of galaxies (A1835 and MKW3S) using Chandra data. N-body simulations in the standard cold dark matter (CDM) model predict the dark matter distribution shows a cuspy dark matter profile: ρ(r) ∝ r, with in the range 1–2, while observations of dwarf and low surface brightness galaxies seem to favor the presence of a relatively flat core: 0 <  < 1. To investigate the dark matter distributions in the central region of clusters of galaxies, we analyze the Chandra data of A1835 and MKW3S with a deprojection method. We derive the mass profiles without the assumption of analytical models. We examine the inner slope of derived mass profiles assuming the dark matter profile is described with a power-law expression. The values of the slope are 0.95 ± 0.10 for A1835 and 1.33 ± 0.12 for MKW3S within the radius of 200 kpc. These are consistent with the result of the CDM simulations. However, within the radius of 100 kpc, the value of is less than unity for A1835 (0.47 ± 0.31). Our result implies that the central dark matter profile of some clusters cannot be described by CDM halos.  相似文献   
62.
In this paper we review the possible radiation mechanisms for the observed non-thermal emission in clusters of galaxies, with a primary focus on the radio and hard X-ray emission. We show that the difficulty with the non-thermal, non-relativistic Bremsstrahlung model for the hard X-ray emission, first pointed out by Petrosian (Astrophys. J. 557, 560, 2001) using a cold target approximation, is somewhat alleviated when one treats the problem more exactly by including the fact that the background plasma particle energies are on average a factor of 10 below the energy of the non-thermal particles. This increases the lifetime of the non-thermal particles, and as a result decreases the extreme energy requirement, but at most by a factor of three. We then review the synchrotron and so-called inverse Compton emission by relativistic electrons, which when compared with observations can constrain the value of the magnetic field and energy of relativistic electrons. This model requires a low value of the magnetic field which is far from the equipartition value. We briefly review the possibilities of gamma-ray emission and prospects for GLAST observations. We also present a toy model of the non-thermal electron spectra that are produced by the acceleration mechanisms discussed in an accompanying paper Petrosian and Bykov (Space Sci. Rev., 2008, this issue, Chap. 11).  相似文献   
63.
The Galaxy Evolution Exporer (GALEX) has performed unprecedented imaging surveys of the Magellanic Clouds (MC) and their surrounding areas including the Magellanic Bridge (MB) in near-UV (NUV, 1771-2831 Å) and far-UV (FUV, 1344-1786 Å) bands at 55 resolution. Substantially more area was covered in the NUV than FUV, particularly in the bright central regions, because of the GALEX FUV detector failure. The 5σσ depth of the NUV imaging varies between 20.8 and 22.7 (ABmag). Such imaging provides the first sensitive view of the entire content of hot stars in the Magellanic System, revealing the presence of young populations even in sites with extremely low star-formation rate surface density like the MB, owing to high sensitivity of the UV data to hot stars and the dark sky at these wavelengths.  相似文献   
64.
A strong X-ray emission is one of the defining signatures of nuclear activity in galaxies. According to the Unified Model for Active Galactic Nuclei (AGN), both the X-ray radiation and the prominent broad emission lines, characterizing the optical and UV spectra of Type 1 AGNs, are originated in the innermost regions of the sources, close to the Super Massive Black Holes (SMBH), which power the central engine. Since the emission is concentrated in a very compact region (with typical size r?0.1r?0.1 pc) and it is not possible to obtain resolved images of the source, spectroscopic studies of this radiation represent the only valuable key to constrain the physical properties of matter and its structure in the center of active galaxies. Based on previous studies on the physics of the Broad Line Region (BLR) and on the X-ray spectra of broad (FWHMHβ ? 2000 km s−1) and narrow line (1000 km s−1 ?FWHMHβ ? 2000 km s−1) emitting objects, it has been observed that the kinematic and ionization properties of matter close to the SMBHs are related together, and, in particular, that ionization is higher in narrow line sources. Here we report on the study of the optical and X-ray spectra of a sample of Type 1 AGNs, selected from the Sloan Digital Sky Survey (SDSS) database, within an upper redshift limit of z=0.35z=0.35, and detected at X-ray energies. We present analysis of the broad emission line fluxes and profiles, as well as the properties of the X-ray continuum and Fe Kα emission and we use these parameters to assess the consistency of our current AGN understanding.  相似文献   
65.
We have statistically investigated the infrared luminosity of clusters of galaxies in comparison with the known tracers of the cluster mass like the X-ray luminosity and the cluster richness (e.g. the number of member galaxies). Our results show that there is a clear positive correlation of the infrared luminosity with the cluster mass. Quantitatively speaking, the infrared luminosity is on average 20 times higher than the X-ray luminosity. Moreover, the infrared luminosity increases with the redshift. This probably shows that a major part of this infrared luminosity is due to star formation in the member galaxies. Another possible contribution would be the thermal emission from dust particles in the diffuse intracluster medium. However our method does not allow us to infer conclusions about this second hypothesis. Depending on their size and abundance, such particles would contribute to the infrared luminosity of galaxy cluster and have an impact on the cooling function of the baryons and thus on the formation of the large scale structures. This is an important cosmological question which still remains open.  相似文献   
66.
We investigate the velocity distribution of elliptical galaxies in the framework of Non-local Gravity. According to this approach, it is possible to recover the fundamental plane of elliptical galaxies without the dark matter hypothesis. Specifically, we compare theoretical predictions for circular velocity in Non-local Gravity context with the corresponding values coming from a large sample of observed elliptical galaxies. We adopt the surface brightness, effective radius and velocity dispersion as structural parameters for the fundamental plane. As final result, it is possible to show that non-local gravity effects can reproduce the stellar dynamics in elliptical galaxies and fit consistently observational data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号