首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   0篇
航空   22篇
航天技术   44篇
  2023年   1篇
  2020年   1篇
  2014年   7篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2009年   3篇
  2008年   10篇
  2007年   1篇
  2006年   3篇
  2005年   7篇
  2004年   11篇
  2003年   1篇
  2002年   1篇
  1998年   3篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1984年   9篇
排序方式: 共有66条查询结果,搜索用时 15 毫秒
31.
It is argued that the high-energy X-ray and -ray emission from flaring blazars is beamed radiation from the relativistic jet supporting the relativistic beaming hypothesis and the unified scenario for AGNs. Most probably the high-energy emission results from inverse Compton scattering by relativistic electrons and positrons in the jet of radiation originating external to the jet plus pair annihilation radiation from the jet. Future positive TeV detections of EGRET AGN sources will be decisive to identify the prominent target photon radiation field. Direct -ray production by energetic hadrons is not important for the flaring phase in -ray blazars, but the acceleration of energetic hadrons during the quiescent phase of AGNs is decisive as the source of secondary electrons and positrons through photo-pair and photo-pion production. Injection of ultrahigh energy secondary electrons and positrons into a stochastic quasilinear acceleration scheme during the quiescent AGN phase leads to cooling electron-positron distribution functions with a strong cut-off at low but relativistic energy that under certain local conditions may trigger a plasma instability that gives rise to an explosive event and the flaring -ray phase.  相似文献   
32.
33.
The detection of low frequency band (100 nHz–100 mHz) and very low frequency band (300 pHz–100 nHz) gravitational waves (GWs) is important for exploration of the equation of state of dark energy and the co-evolution of massive black holes (MBHs) with galaxies. Most galaxies are believed to have a massive black hole in the galactic core. In the formation of these black holes, merging and accretion are the two main processes. Merging of massive black holes generate GWs which could be detected by space GW detectors and Pulsar Timing Arrays (PTAs) to cosmological distances. LISA (Laser-Interferometric Space Antenna) is most sensitive to the frequency band 1 mHz–100 mHz, ASTROD-GW (ASTROD [Astrodynamical Space Test of Relativity using Optical Devices] optimized for Gravitational Wave detection) is most sensitive to the frequency band 100 nHz–1 mHz and PTAs are most sensitive to the frequency band 300 pHz–100 nHz. In this paper, we discuss the sensitivities and outlooks of detection of GWs from binary massive black holes in these frequency bands with an emphasis on ASTROD-GW. The GWs generated by the inspirals, merging and subsequent ringdowns of binary black holes are standard sirens to the cosmological distance. Using GW observations, we discuss the methods for determining the equation of state of dark energy and for testing the co-evolution models of massive black holes. ASTROD-GW is an optimization of ASTROD to focus on the goal of detection of GWs. The mission orbits of the 3 spacecraft forming a nearly equilateral triangular array are chosen to be near the Sun-Earth Lagrange points L3, L4 and L5. The 3 spacecraft range interferometrically with one another with arm length about 260 million kilometers. With 52 times longer in arm length compared to that of LISA, the strain detection sensitivity is 52 times better toward larger wavelength. The scientific aim is focused for gravitational wave detection at low frequency. The science goals include detection of GWs from MBHs, and Extreme-Mass-Ratio Black Hole Inspirals (EMRI), and using these observations to find the evolution of the equation of state of dark energy and to explore the co-evolution of massive black holes with galaxies.  相似文献   
34.
The centers of elliptical galaxies host supermassive black holes that significantly affect the surrounding interstellar medium through feedback resulting from the accretion process. The evolution of this gas and of the nuclear emission during the galaxies’ lifetime has been studied recently with high-resolution hydrodynamical simulations. These included gas cooling and heating specific for an average AGN spectral energy distribution, a radiative efficiency declining at low mass accretion rates, and mechanical coupling between the hot gas and AGN winds. Here, we present a short summary of the observational properties resulting from the simulations, focussing on (1) the nuclear luminosity; (2) the global luminosity and temperature of the hot gas; (3) its temperature profile and X-ray brightness profile. These properties are compared with those of galaxies of the local universe, pointing out the successes of the adopted feedback and the needs for new input in the simulations.  相似文献   
35.
In this review, I survey our current understanding of how the very first stars in the universe formed, with a focus on three main areas of interest: the formation of the first protogalaxies and the cooling of gas within them, the nature and extent of fragmentation within the cool gas, and the physics – in particular the interplay between protostellar accretion and protostellar feedback – that serves to determine the final stellar mass. In each of these areas, I have attempted to show how our thinking has developed over recent years, aided in large part by the increasing ease with which we can now perform detailed numerical simulations of primordial star formation. I have also tried to indicate the areas where our understanding remains incomplete, and to identify some of the most important unsolved problems.  相似文献   
36.
The problem of cosmic ray production in the spiral galaxy NGC 3310 is addressed by analysing and comparing optical and radio continuum data. Tentative results indicate that on global scales relativistic electrons may be produced in the shock front associated with teh density wave while on local scales extreme population I objects may be producing them. It is inferred that the same conclusions apply to all cosmic rays produced in the disk.  相似文献   
37.
Modern hydrodynamical simulations offer nowadays a powerful means to trace the evolution of the X-ray properties of the intra-cluster medium (ICM) during the cosmological history of the hierarchical build up of galaxy clusters. In this paper we review the current status of these simulations and how their predictions fare in reproducing the most recent X-ray observations of clusters. After briefly discussing the shortcomings of the self-similar model, based on assuming that gravity only drives the evolution of the ICM, we discuss how the processes of gas cooling and non-gravitational heating are expected to bring model predictions into better agreement with observational data. We then present results from the hydrodynamical simulations, performed by different groups, and how they compare with observational data. As terms of comparison, we use X-ray scaling relations between mass, luminosity, temperature and pressure, as well as the profiles of temperature and entropy. The results of this comparison can be summarised as follows: (a) simulations, which include gas cooling, star formation and supernova feedback, are generally successful in reproducing the X-ray properties of the ICM outside the core regions; (b) simulations generally fail in reproducing the observed “cool core” structure, in that they have serious difficulties in regulating overcooling, thereby producing steep negative central temperature profiles. This discrepancy calls for the need of introducing other physical processes, such as energy feedback from active galactic nuclei, which should compensate the radiative losses of the gas with high density, low entropy and short cooling time, which is observed to reside in the innermost regions of galaxy clusters.  相似文献   
38.
Radio and gamma-ray emissions in Active Galactic Nuclei (AGNs) are both related to the presence of relativistic particles in jets. With the advent of the Fermi Large Area Telescope (LAT), and thanks to its large sensitivity up to several GeV, many observational results are changing our understanding of these phenomena. BL Lac objects, which made up only a fraction of the known extragalactic gamma-ray source population before Fermi, have now become the most abundant class. However, since they are relatively weak radio sources, most of them are poorly known as far as their parsec scale structure and multi-wavelength properties are concerned. For this reason, we have selected a complete sample of 42 low redshift BL Lacs (independently of their gamma-ray properties) to study with a multi-wavelength (radio, optical, X-ray, gamma-ray) approach. Here, we present results and images of sources in the sample (most of which have never been observed before), using new VLBA observations at 8 and 15 GHz. Beyond this sample of BL Lacs, the population of gamma-ray AGNs has also dramatically enlarged in the Fermi era, permitting us to discuss the presence of a correlation between radio and gamma-ray properties with improved statistical significance. We explore the radio-gamma relation with several hundreds sources and using both simultaneous and archival radio data, thus tackling the impact of time variability.  相似文献   
39.
Høg  E.  Pagel  B.E.J.  Portinari  L.  Thejll  P.A.  Macdonald  J.  Girardi  L. 《Space Science Reviews》1998,84(1-2):115-126
The primordial helium abundance YP is important for cosmology and the ratio Y/Z of the changes relative to primordial abundances constrains models of stellar evolution. While the most accurate estimates of YP come from emission lines in extragalactic H II regions, they involve an extrapolation to zero metallicity which itself is closely tied up with the slope Y/Z. Recently certain systematic effects have come to light in this exercise which make it useful to have an independent estimate of Y/Z from fine structure in the main sequence of nearby stars. We derive such an estimate from Hipparcos data for stars with Z Z and find values between 2 and 3, which are consistent with stellar models, but still have a large uncertainty.  相似文献   
40.
An analysis of the variability timescale against bolometric luminosity for Active Galactic Nuclei shows that a number of sources violate the Eddington limit. The average ratio (L/LE) is found to change according to group classification. Whilst Seyfert Galaxies have luminosites well within the Eddington limit, Quasars and BL Lac object tend to approach and exceed this limit. Furthermore, BL Lac objects may be further subdivided on the basis of their (L/LE) ratio. The data on luminosity and variability timescale indicate the existence of two types of active galaxies, one having highly anisotropic emission, probably collimated into jets with pointing angles within few degrees to the line of sight, and the other relating to isotropic emission of photons from the nuclear region. The results are discussed in the light of the high γ-ray luminosity suggested by recent observations of active galaxies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号