首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1700篇
  免费   217篇
  国内免费   198篇
航空   514篇
航天技术   831篇
综合类   46篇
航天   724篇
  2024年   14篇
  2023年   31篇
  2022年   51篇
  2021年   79篇
  2020年   72篇
  2019年   49篇
  2018年   64篇
  2017年   50篇
  2016年   58篇
  2015年   78篇
  2014年   101篇
  2013年   100篇
  2012年   97篇
  2011年   169篇
  2010年   133篇
  2009年   81篇
  2008年   91篇
  2007年   100篇
  2006年   89篇
  2005年   86篇
  2004年   68篇
  2003年   56篇
  2002年   40篇
  2001年   44篇
  2000年   43篇
  1999年   51篇
  1998年   27篇
  1997年   27篇
  1996年   18篇
  1995年   19篇
  1994年   16篇
  1993年   21篇
  1992年   17篇
  1991年   22篇
  1990年   16篇
  1989年   12篇
  1988年   14篇
  1987年   11篇
排序方式: 共有2115条查询结果,搜索用时 15 毫秒
901.
In the framework of satellite-only gravity field modeling, satellite laser ranging (SLR) data is typically exploited to recover long-wavelength features. This contribution provides a detailed discussion of the SLR component of GOCO02S, the latest release of combined models within the GOCO series. Over a period of five years (January 2006 to December 2010), observations to LAGEOS-1, LAGEOS-2, Ajisai, Stella, and Starlette were analyzed. We conducted a series of closed-loop simulations and found that estimating monthly sets of spherical harmonic coefficients beyond degree five leads to exceedingly ill-posed normal equation systems. Therefore, we adopted degree five as the spectral resolution for real data analysis. We compared our monthly coefficient estimates of degree two with SLR and Gravity Recovery and Climate Experiment (GRACE) time series provided by the Center for Space Research (CSR) at Austin, Texas. Significant deviations in C20 were noted between SLR and GRACE; the agreement is better for the non-zonal coefficients. Fitting sinusoids together with a linear trend to our C20 time series yielded a rate of (−1.75 ± 0.6) × 10−11/yr; this drift is equivalent to a geoid change from pole to equator of 0.35 ± 0.12 mm/yr or an apparent Greenland mass loss of 178.5 ± 61.2 km3/yr. The mean of all monthly solutions, averaged over the five-year period, served as input for the satellite-only model GOCO02S. The contribution of SLR to the combined gravity field model is highest for C20, and hence is essential for the determination of the Earth’s oblateness.  相似文献   
902.
《中国航空学报》2020,33(12):3395-3404
In this study, a Dual Smoothing Ionospheric Gradient Monitor Algorithm (DSIGMA) was developed for Code-Carrier Divergence (CCD) faults of dual-frequency Ground-Based Augmentation Systems (GBAS) based on the BeiDou Navigation Satellite System (BDS). Divergence-Free (DF) combinations of the signals were used to form test statistics for a dual-frequency DSIGMA. First, the single-frequency DSIGMA was reviewed, which supports the GBAS approach service type D (GAST-D) for protection against the effect of large ionospheric gradients. The single-frequency DSIGMA was used to create a novel input scheme for the dual-frequency DSIGMA by introducing DF combinations. The steady states of the test statistics were also analysed. The monitors were characterized using BDS measurement data, whereby standard deviations of 0.0432 and 0.0639 m for the proposed two test statistics were used to calculate the monitor threshold. An extensive simulation was designed to assess the monitor performance by comparing the Probability of Missed Detection (PMD) according to the differential error with the range domain PMD limits under different fault modes. The results showed that the proposed algorithm has a higher integrity performance than the single-frequency monitor. The minimum detectable divergence with the same missed probability is less than 50% that of GAST-D.  相似文献   
903.
The Rodalquilar epithermal quartz-alunite gold deposits that occur within the Rodalquilar caldera complex in southeast Spain, are associated with a pronounced hydrothermal alteration of the country rocks. The hydrothermal alteration zones that are exposed on the surface consist of the vuggy silica zone, the advanced argillic alteration zone, the intermediate argillic alteration zone, the propylitic alteration zone, and a second stage supergene acid sulfate alteration. High spatial resolution multispectral imagery recorded by the WorldView-3 satellite was used in this study to map the spatial distribution of the main alteration minerals in the Rodalquilar caldera complex. Thermal infrared (TIR) data of the ASTER satellite were used to detect the quartz-rich zones. The analysis of the Rodalquilar WorldView-3 data was based on the Adaptive Coherence Estimator (ACE), a partial unmixing algorithm. The ACE processing accurately mapped the spatial distribution of alunite, kaolinite, illite and goethite. Alunite is abundant in the vuggy silica and advanced argillic alteration zones, and in the second stage supergene acid sulfate alteration. Kaolinite is predominant in the intermediate argillic alteration zone. Illite is abundant in the outer parts of the intermediate argillic alteration zone. Goethite image maps gossans that mainly occur in the vuggy silica and advanced argillic alteration zones, and in the areas characterized by the second stage supergene acid sulfate alteration. The detection of quartz-rich zones from the ASTER TIR data complemented the WorldView-3 mapping results. The study shows the efficiency of high spatial resolution multispectral remote sensing imagery recorded by the WorldView-3 satellite for district-level mineral exploration studies.  相似文献   
904.
Since China’s BeiDou satellite navigation system (BDS) began to provide regional navigation service for Asia-Pacific region after 2012, more new generation BDS satellites have been launched to further expand BDS’s coverage to be global. In this contribution, precise positioning models based on BDS and the corresponding mathematical algorithms are presented in detail. Then, an evaluation on BDS’s real-time dynamic positioning and navigation performance is presented in Precise Point Positioning (PPP), Real-time Kinematic (RTK), Inertial Navigation System (INS) tightly aided PPP and RTK modes by processing a set of land-borne vehicle experiment data. Results indicate that BDS positioning Root Mean Square (RMS) in north, east, and vertical components are 2.0, 2.7, and 7.6?cm in RTK mode and 7.8, 14.7, and 24.8?cm in PPP mode, which are close to GPS positioning accuracy. Meanwhile, with the help of INS, about 38.8%, 67.5%, and 66.5% improvements can be obtained by using PPP/INS tight-integration mode. Such enhancements in RTK/INS tight-integration mode are 14.1%, 34.0%, and 41.9%. Moreover, the accuracy of velocimetry and attitude determination can be improved to be better than 1?cm/s and 0.1°, respectively. Besides, the continuity and reliability of BDS in both PPP and RTK modes can also be ameliorated significantly by INS during satellite signal missing periods.  相似文献   
905.
With the improvement in the service accuracy and expansion of the application scope of satellite navigation systems, users now have high demands for system integrity that are directly related to navigation safety. As a crucial index to measure the reliability of satellite navigation systems, integrity is the ability of the system to send an alarm when an abnormity occurs. The new-generation Beidou Navigation Satellite System (BDS-3) prioritized the upgrading of system integrity as an important objective in system construction. Because the system provides both basic navigation and satellite-based augmentation system (SBAS) services by the operational control system, BDS-3 adopts an integrated integrity monitoring and processing strategy that applies satellite autonomous integrity monitoring and ground-based integrity monitoring for both the basic navigation service and SBAS navigation service. BDS-3 also uses an improved and refined integrity parameter system to provide slow, fast and real-time integrity parameters for basic navigation, and provide SBAS-provided integrity information messages in accordance with Radio Technical Commission for Aeronautics (RTCA) specification and dual frequency, multi-constellation (DFMC) specification to support the SBAS signal frequency, single constellation operation and DFMC operation respectively. The performance of BDS-3 system integrity monitoring is preliminarily verified during on-orbit testing in different states, including normal operation, satellite clock failure and satellite ephemeris failure. The results show that satellite autonomous integrity monitoring, ground-based integrity monitoring and satellite-based augmentation all correctly work within the system. Satellite autonomous integrity monitoring can detect satellite clock failure but not satellite orbit failure. However, ground-based integrity monitoring can detect both. Moreover, the satellite-based augmentation integrity system monitors the differential range error after satellite ephemeris and clock error corrections based on user requirements. Compared to the near minute-level time-to-alert capability of ground-based integrity monitoring, satellite autonomous integrity monitoring reduces the system alert time to less than 4 s. With a combined satellite-ground monitoring strategy and the implementation of different monitoring technologies, the BDS-3 integrity of service has been considerably improved.  相似文献   
906.
This paper demonstrates active space debris removal using spaceborne laser systems. The laser beam and the surface of the target are discretised into multiple rays and finite elements, respectively, for laser-target interaction modelling, in which the laser ablation process is investigated. A high-fidelity attitude/orbit propagator tool is developed to account for both the linear impulse and angular impulse induced by the laser engagement and other perturbations. The laser system is activated only when three switch criteria are satisfied. In numerical simulations, laser pulses from international space station are generated to deorbit a 3U CubeSat with initially tumbling modes. The results validate the effectiveness of deorbiting tumbling CubeSats using spaceborne laser engagement, with the perigee height lowered by approximately 2.4km in around 30min after 2h propagation. It is also found that the laser engagement becomes more effective for an initially faster rotating object.  相似文献   
907.
A method is proposed for reconstructing the electron density profiles N(h) of the IRI model from ionograms of topside satellite sounding of the ionosphere. An ionograms feature is the presence of traces of signal reflection from the Earth's surface. The profile reconstruction is carried out in two stages. At the first stage, the N(h) –profile is calculated from the lower boundary of the ionosphere to the satellite height (total profile) by the method presented in this paper using the ionogram. In this case, the monotonic profile of the topside ionosphere is calculated by the classical method. The profile of the inner ionosphere is represented by analytical functions, the parameters of which are calculated by optimization methods using traces of signal reflection, both from the topside ionosphere and from the Earth. At the second stage, the profile calculated from the ionogram is used to obtain the key parameters: the height of the maximum hmF2 of the F2 layer, the critical frequency foF2, the values of B0 and B1, which determine the profile shape in the F region in the IRI model. The input of key parameters, time of observation, and coordinates of sounding into the IRI model allows obtaining the IRI-profile corrected to real experimental conditions. The results of using the data of the ISIS-2 satellite show that the profiles calculated from the ionograms and the IRI profiles corrected from them are close to each other in the inner ionosphere and can differ significantly in the topside ionosphere. This indicates the possibility of obtaining a profile in the inner ionosphere close to the real distribution, which can significantly expand the information database useful for the IRTAM (IRI Realmax Assimilative Modeling) model. The calculated profiles can be used independently for local ionospheric research.  相似文献   
908.
运载火箭捷联惯组全自主对准技术应用研究   总被引:1,自引:1,他引:0       下载免费PDF全文
我国运载火箭发射前通常通过光学瞄准确定初始方位角,采用捷联惯组自对准解算获取水平姿态角。以可实现简易、快速发射的新型火箭为背景,在发射场阵风等干扰引起箭体低频微幅晃动的环境下,研究了捷联惯组自主对准技术。分析了运载火箭全自主对准的特点,利用以惯性系为参考基准的解析对准法和卡尔曼滤波精对准方法,对高精度全自主对准技术和其在运载火箭上的应用展开了详细论述。开展了全自主对准试验验证,结合新一代运载火箭首飞数据进行了分析。结果表明:捷联惯组全自主对准技术可替代复杂的光学瞄准系统,实现运载火箭发射前初始姿态的确定。  相似文献   
909.
Satellite Laser Ranging (SLR) is a powerful technique able to measure spin rate and spin axis orientation of the fully passive, geodetic satellites. This work presents results of the spin determination of LARES – a new satellite for testing General Relativity. 529 SLR passes measured between February 17 and June 9, 2012, were spectrally analyzed. Our results indicate that the initial spin frequency of LARES is f0 = 86.906 mHz (RMS = 0.539 mHz). A new method for spin axis determination, developed for this analysis, gives orientation of the axis at RA = 12h22m48s (RMS = 49m), Dec = −70.4° (RMS = 5.2°) (J2000.0 celestial reference frame), and the clockwise (CW) spin direction. The half-life period of the satellite’s spin is 214.924 days and indicates fast slowing down of the spacecraft.  相似文献   
910.
Accurate knowledge of the rotational dynamics of a large space debris is crucial for space situational awareness (SSA), whether it be for accurate orbital predictions needed for satellite conjunction analyses or for the success of an eventual active debris removal mission charged with stabilization, capture and removal of debris from orbit. In this light, the attitude dynamics of an inoperative satellite of great interest to the space debris community, the joint French and American spacecraft TOPEX/Poseidon, is explored. A comparison of simulation results with observations obtained from high-frequency satellite range measurements is made, showing that the spacecraft is currently spinning about its minor principal axis in a stable manner. Predictions of the evolution of its attitude motion to 2030 are presented, emphasizing the uncertainty on those estimates due to internal energy dissipation, which could cause a change of its spin state in the future. The effect of solar radiation pressure and the eddy-current torque are investigated in detail, and insights into some of the satellite’s missing properties are provided. These results are obtained using a novel, open-source, coupled orbit-attitude propagation software, the Debris SPin/Orbit Simulation Environment (D-SPOSE), whose primary goal is the study of the long-term evolution of the attitude dynamics of large space debris.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号