首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   323篇
  免费   21篇
  国内免费   43篇
航空   115篇
航天技术   198篇
综合类   21篇
航天   53篇
  2024年   1篇
  2023年   8篇
  2022年   8篇
  2021年   13篇
  2020年   15篇
  2019年   13篇
  2018年   14篇
  2017年   21篇
  2016年   5篇
  2015年   15篇
  2014年   23篇
  2013年   16篇
  2012年   29篇
  2011年   24篇
  2010年   19篇
  2009年   37篇
  2008年   21篇
  2007年   15篇
  2006年   13篇
  2005年   16篇
  2004年   6篇
  2003年   10篇
  2002年   7篇
  2001年   3篇
  2000年   6篇
  1999年   3篇
  1998年   4篇
  1997年   1篇
  1996年   4篇
  1995年   4篇
  1994年   1篇
  1993年   3篇
  1992年   5篇
  1991年   2篇
  1989年   1篇
  1984年   1篇
排序方式: 共有387条查询结果,搜索用时 406 毫秒
311.
Bifurcation analysis of ion-acoustic wave (IAWs) solutions of the nonlinear Schrödinger equation (NLSE) is explored for the first time in an electron-ion (e-i) magnetized solar wind plasma. The existence of ion-acoustic (IA) periodic, superperiodic, kink, antikink, compressive and rarefactive solitary wave solutions are revealed. Special values of Solar wind plasma parameters at a normalized distance from the Sun are considered for numerical simulation. The IA wave solutions are derived analytically. These solutions are analyzed numerically considering the influence of parameters, namely, wave number (k), velocity (V) of traveling wave and nonextensive parameter (q). Computational simulation reveals that only IA periodic wave grows in amplitude as waves moves from the Sun.  相似文献   
312.
The global navigation satellite system (GNSS) is presently a powerful tool for sensing the Earth's ionosphere. For this purpose, the ionospheric measurements (IMs), which are by definition slant total electron content biased by satellite and receiver differential code biases (DCBs), need to be first extracted from GNSS data and then used as inputs for further ionospheric representations such as tomography. By using the customary phase-to-code leveling procedure, this research comparatively evaluates the calibration errors on experimental IMs obtained from three GNSS, namely the US Global Positioning System (GPS), the Chinese BeiDou Navigation Satellite System (BDS), and the European Galileo. On the basis of ten days of dual-frequency, triple-GNSS observations collected from eight co-located ground receivers that independently form short-baselines and zero-baselines, the IMs are determined for each receiver for all tracked satellites and then for each satellite differenced for each baseline to evaluate their calibration errors. As first derived from the short-baseline analysis, the effects of calibration errors on IMs range, in total electron content units, from 1.58 to 2.16, 0.70 to 1.87, and 1.13 to 1.56 for GPS, Galileo, and BDS, respectively. Additionally, for short-baseline experiment, it is shown that the code multipath effect accounts for their main budget. Sidereal periodicity is found in single-differenced (SD) IMs for GPS and BDS geostationary satellites, and the correlation of SD IMs over two consecutive days achieves the maximum value when the time tag is around 4?min. Moreover, as byproducts of zero-baseline analysis, daily between-receiver DCBs for GPS are subject to more significant intra-day variations than those for BDS and Galileo.  相似文献   
313.
This study presents the first prediction results of a neural network model for the vertical total electron content of the topside ionosphere based on Swarm-A measurements. The model was trained on 5 years of Swarm-A data over the Euro-African sector spanning the period 1 January 2014 to 31 December 2018. The Swarm-A data was combined with solar and geomagnetic indices to train the NN model. The Swarm-A data of 1 January to 30 September 2019 was used to test the performance of the neural network. The data was divided into two main categories: most quiet and most disturbed days of each month. Each category was subdivided into two sub-categories according to the Swarm-A trajectory i.e. whether it was ascending or descending in order to accommodate the change in local time when the satellite traverses the poles. Four pairs of neural network models were implemented, the first of each pair having one hidden layer, and the second of each pair having two hidden layers, for the following cases: 1) quiet day-ascending, 2) quiet day-descending, 3) disturbed day-ascending, and 4) disturbed day-descending. The topside vertical total electron content predicted by the neural network models compared well with the measurements by Swarm-A. The model that performed best was the one hidden layer model in the case of quiet days for descending trajectories, with RMSE = 1.20 TECU, R = 0.76. The worst performance occurred during the disturbed descending trajectories where the one hidden layer model had the worst RMSE = 2.12 TECU, (R = 0.54), and the two hidden layer model had the worst correlation coefficient R = 0.47 (RMSE = 1.57).In all cases, the neural network models performed better than the IRI2016 model in predicting the topside total electron content. The NN models presented here is the first such attempt at comparing NN models for the topside VTEC based on Swarm-A measurements.  相似文献   
314.
The ionospheric total electron content (TEC) in both northern and southern Equatorial anomaly regions are examined by using the Global Positioning System (GPS) based TEC measurements around 73°E Longitude in the Asian sector. The TEC contour charts obtained at SURAT (21.16°N; 72.78°E; 12.9°N Geomagnetic Lat.) and DGAR (7.27°S; 72.37°E; 15.3°S Geomagnetic Lat.) over 73°E longitude during a very low solar activity phase (2009) and a moderate solar activity (2012) phase are used in this study. The results show the existence of hemispheric asymmetry and the effects of solar activity on the EIA crest in occurrence time, location and strength. The results are also compared with the TEC derived by IRI-2016 Model and it is found that the North-South asymmetry at the EIA region is clearly depicted by IRI-2016 with some discrepancies (up to 20% in the northern hemisphere at SURAT and up to 40% in the southern hemisphere at DGAR station for June Solstice and up to 10% both for SURAT and DGAR for December Solstice). This discrepancy in the IRI-2016 model is found larger during the year 2012 than that during the solar minimum year 2009 at both the hemispheres. Further, an asymmetry index, (Ai) is determined to illustrate the North-South asymmetry observed in TEC at EIA crest. The seasonal, annual and solar flux dependence of this index are investigated during both solstices and compared with the TEC derived by IRI.  相似文献   
315.
This paper investigates bottomside thickness parameters at Digisonde stations over midlatitude and high latitude regions, and compares the diurnal, seasonal, and solar activity variations in 2014 and 2009. The geographic latitudes of high latitude considered in this work are located beyond ±60° and those of midlatitude are located between ±40° and ±60°. The IRI-modeled B0 with ABT-2009 option (B0_IRI) are also examined and compared with four kinds of the B0 values, i.e., the observed B0 (B0_obs) from GIRO, the computed B0 following to Jamjareegulgarn et al. (2017a) (B0_old), the calculated B0 with a correction factor regarding to Jamjareegulgarn et al. (2017b) (B0_new), and the B0 with an average correction factor (B0_new_c_av). The average correction factors are proposed additionally in this work so as to assist occasionally the experimental B0 nonexistence of Digisonde which are equal to 0.2658 and 0.2058 for midlatitudes and high latitudes, respectively. Results show that the diurnal variations of B0_new and B0_new_c_av are in a good agreement with those of B0_obs evidently compared with those of B0_IRI and B0_old at every station during the three seasons over high and middle latitudes. During the three seasons, the diurnal variations of B0_new_c_av show similar trends and are close to one another with the B0_obs and the B0_new with small deviations. The differences between the B0obs and the B0_new_c_av also show similar trends and are close to one another with those between the B0obs and the B0_new. In contrast, the B0_IRI with ABT-2009 option seems to predict the B0 values poorly during the three seasons at high latitudes and some seasons at midlatitudes. The proposed B0_new is useful for computing approximately the observed B0 and the ionogram-based total electron content (ITEC) of Digisonde, and the plasma scale height over midlatitudes and high latitudes.  相似文献   
316.
In this paper,an interleaved LCLC converter with enhancement-mode(E-mode)GaN devices is introduced to achieve the accurate current sharing performance for data center applications. Any tolerance in the resonant tank elements can lead to large load imbalance between any two different phases. Due to the steep gain curves of LCLC converters,conventional current sharing methods are not effective. In the proposed converter,the impedances of the resonant networks are matched by switching a capacitor,i.e.,switch controlled capacitor(SCC),in series with the resonant capacitor in one or some of the phases,which results in accurate load current sharing among the phases with an accuracy around 0.025%. The load share of a phase is sensed through the resonant current on it,and the control logic applied to such current sharing can be achieved. By this method,accurate current sharing is achieved for a wide input voltage range required for the hold-up time in data center applications. Interleaving is applied in the proposed multiphase LCLC converter,resulting in low current stress on the output capacitor and allowing ceramic capacitor implementation. Moreover,phase shedding accomplishes high light load efficiency. The performance of the proposed interleaved LCLC converter is verified by a two-phase 1 k W prototype with an input voltage ranging from 250 V to 400 V and a fixed 12 V output voltage.  相似文献   
317.
The Helheim glacier, located in southeast Greenland, has more than ten campaign-type Global Positioning System (GPS) sites; data processing led to the observation of a very rapid change in the ionospheric delay. To identify the cause of these sporadic disturbances, we analyzed the slant total electron content (STEC), single-differenced STEC (SD-STEC) and scintillation proxy index called the delta phase rate (DPR). From this analysis, the abrupt change of those ionospheric indicators was attributed to the line-of-sight direction to the satellite and the temporal sequence of the event was found to be highly correlated with the geometry of the GPS sites. In addition, the disturbance based on the result of SD-STEC occurred mostly during the night, from 17 UTC through 7 UTC, and across a band spanning the east-west direction. Based on the DPR indices obtained from GPS stations distributed across all of Greenland, Iceland, and northeastern Canada, the rapid ionospheric variation was found to be correlated with the time of the day and the geomagnetic latitude of the station. The disturbance was larger at the relatively low geomagnetic latitudes at night but was more significant at higher latitudes in the daytime. These rapid ionospheric variations tended to appear in band shapes parallel to the geomagnetic field. These results allow us to attribute such disturbance observed at the Helheim glacier to aurora-related phenomena.  相似文献   
318.
The solar cycle variation and seasonal changes significantly affects the ionization process of earth’s ionosphere and required to be monitored in real time basis for regional level refinement of existing models. In view of this, the present study has been carried out by using the ionospheric Total Electron Content (TEC) data observed with the help of Global Ionospheric Scintillation and TEC monitoring (GISTM) system installed at Indian Antarctic Research Station, “Maitri” [70°46′00″S 11°43′56″E] during the ascending phase of 24th solar cycle. The daily values of solar extreme ultraviolet (EUV) flux (0.1–50?nm wavelength), 10.7?cm radio flux F10.7 and Sunspot number (SSN) has been taken as a proxy to represent the solar cycle variation to correlate with TEC. The linear regression results revels better correlation of TEC with EUV flux rather than F10.7 and SSN. Also, the EUV and TEC show better agreement during summer as compared to winter and equinox period. Correlation between TEC and EUV appears significantly noticeable during ten internationally defined quiet days of each month (stable background geophysical condition) as compared to the overall days (2010–2014). Further, saturation effect has been observed on TEC values during the solar maxima year 2014. The saturation effects are more prominent during the night hours of winter and equinox season due to transportation losses manifested by the equator-ward direction of meridional wind.  相似文献   
319.
The paper presents an empirical model of the total electron content (TEC) response to the geomagnetic activity described by the Kp-index. The model is built on the basis of TEC measurements covering the region of North America (50°W–150°W, 10°N–60°N) for the period of time between October 2004 and December 2009. By using a 2D (latitude-time) cross-correlation analysis it is found that the ionospheric response to the geomagnetic activity over the considered geographic region and at low solar activity revealed both positive and negative phases of response. The both phases of the ionospheric response have different duration and time delay with respect to the geomagnetic storm. It was found that these two parameters of the ionospheric response depend on the season and geographical latitude. The presence of two phases, positive and negative, of the ionospheric response imposed the implementation of two different time delay constants in order to properly describe the two different delayed reactions. The seasonal dependence of the TEC response to geomagnetic storms is characterized by predominantly positive response in winter with a short (usually ∼5–6 h) time delay as well as mainly negative response in summer with a long (larger than 15 h) time delay. While the TEC response in March and October is more close to the winter one the response in April and September is similar to the summer one.  相似文献   
320.
The Martian ionosphere has for the first time been probed by a low frequency topside radio wave sounder experiment (MARSIS) (Gurnett et al., 2005). The density profiles in the Martian ionosphere have for the first time been observed for solar zenith angles less than 48 degrees. The sounder spectrograms typically have a single trace of echoes, which are controlled by reflections from the ionosphere in the direction of nadir. With the local density at the spacecraft derived from the sounder measurements and using the lamination technique the spectrograms are inverted to electron density profiles. The measurements yield electron density profiles from the sub-solar region to past the terminator. The maximum density varies in time with the solar rotation period, indicating control of the densities by solar ionizing radiation. Electron density increases associated with solar flares were observed. The maximum electron density varies with solar zenith angle as predicted by theory. The altitude profile of electron densities between the maximum density and about 170m altitude is well approximated by a classic Chapman layer. The neutral scale height is close to 10 to 13 km. At altitudes above 180 km the densities deviate from and are larger than inferred by the Chapman layer. At altitudes above the exobase the density decrease was approximated by an exponential function with scale heights between 24 and 65 km. The densities in the top side ionosphere above the exobase tends to be larger than the densities extrapolated from the Chapman layer fitted to the measurements at lower altitudes, implying more efficient upward diffusion above the collision dominated photo equilibrium region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号