首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   9篇
  国内免费   4篇
航空   22篇
航天技术   59篇
综合类   3篇
航天   16篇
  2023年   2篇
  2022年   2篇
  2021年   6篇
  2020年   5篇
  2018年   3篇
  2017年   1篇
  2015年   3篇
  2014年   8篇
  2013年   5篇
  2012年   9篇
  2011年   6篇
  2010年   9篇
  2009年   6篇
  2008年   7篇
  2007年   5篇
  2006年   5篇
  2005年   4篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1998年   2篇
  1997年   2篇
  1995年   1篇
  1994年   1篇
排序方式: 共有100条查询结果,搜索用时 171 毫秒
11.
In preparation of ITRF2008, all geodetic technique services (VLBI, SLR, GPS and DORIS) are generating new solutions based on combination of individual analysis centers solutions. These data reprocessing are based on a selection of models, parameterization and estimation strategy unique to each analysis center and to each technique. While a good agreement can be found for models between groups, thanks to the existence of the IERS conventions, a great diversity still exist for parameter estimation, allowing possible future improvements in this direction. The goal of this study is to focus on the atmospheric drag estimation used to generate the new DORIS/IGN ignwd08 time series prepared for ITRF2008. We develop here a method to inter-compare different processing strategies. In a first step, by analyzing single-satellite solutions for a few weeks of data but for a large number of possible analysis strategies, we demonstrate that estimating drag coefficient more frequently (typically every 1–2 h instead of previously every 4–8 h) for the lowest DORIS satellites (SPOTs and Envisat) provides better geodetic results for station coordinates and polar motion. This new processing strategy also solved earlier problem found when processing DORIS data during intense geomagnetic events, such as geomagnetic storms. Differences between drag estimation strategies can mostly be found during these few specific periods of extreme geomagnetic activity (few days per year). In such a case, when drag coefficient is only estimated every 6 h or less often for single-satellite solution, a significant degradation in station coordinate accuracy can be observed (120 mm vs. 20 mm) and significant biases arose in polar motion estimation (5 mas vs. 0.3 mas). In a second step, we reprocessed a full year of DORIS data (2003) in a standard multi-satellite mode. We were able to provide statistics on a more reliable data set and to strengthen these conclusions. Our proposed DORIS analysis is easy to implement in all software packages and is now already used by several analysis centers of the International DORIS Service (IDS) when submitting reprocessed solutions for ITRF2008.  相似文献   
12.
For the first time, the International DORIS Service (IDS) has produced a technique level combination based on the contributions of seven analysis centers (ACs), including the European Space Operations Center (ESOC), Geodetic Observatory Pecny (GOP), Geoscience Australia (GAU), the NASA Goddard Space Flight Center (GSFC), the Institut Géographique National (IGN), the Institute of Astronomy, Russian Academy of Sciences (INASAN, named as INA), and CNES/CLS (named as LCA). The ACs used five different software packages to process the DORIS data from 1992 to 2008, including NAPEOS (ESA), Bernese (GOP), GEODYN (GAU, GSC), GIPSY/OASIS (INA), and GINS (LCA). The data from seven DORIS satellites, TOPEX/Poseidon, SPOT-2, SPOT-3, SPOT-4, SPOT-5, Envisat and Jason-1 were processed and all the analysis centers produced weekly SINEX files in either variance–covariance or normal equation format. The processing by the analysis centers used the latest GRACE-derived gravity models, forward modelling of atmospheric gravity, updates to the radiation pressure modelling to improve the DORIS geocenter solutions, denser parameterization of empirically determined drag coefficients to improve station and EOP solutions, especially near the solar maximum in 2001–2002, updated troposphere mapping functions, and an ITRF2005-derived station set for orbit determination, DPOD2005. The CATREF software was used to process the weekly AC solutions, and produce three iterations of an IDS global weekly combination. Between the development of the initial solution IDS-1, and the final solution, IDS-3, the ACs improved their analysis strategies and submitted updated solutions to eliminate troposphere-derived biases in the solution scale, to reduce drag-related degradations in station positioning, and to refine the estimation strategy to improve the combination geocenter solution. An analysis of the frequency content of the individual AC geocenter and scale solutions was used as the basis to define the scale and geocenter of the IDS-3 combination. The final IDS-3 combination has an internal position consistency (WRMS) that is 15 to 20 mm before 2002 and 8 to 10 mm after 2002, when 4 or 5 satellites contribute to the weekly solutions. The final IDS-3 combination includes solutions for 130 DORIS stations on 67 different sites of which 35 have occupations over 16 years (1993.0–2009.0). The EOPs from the IDS-3 combination were compared with the IERS 05 C04 time series and the RMS agreement was 0.24 mas and 0.35 mas for the X and Y components of polar motion. The comparison to ITRF2005 in station position shows an agreement of 6 to 8 mm RMS in horizontal and 10.3 mm in height. The RMS comparison to ITRF2005 in station velocity is at 1.8 mm/year on the East component, to 1.2 mm/year in North component and 1.6 mm/year in height.  相似文献   
13.
设G是一个格序群,П(G),П(m(G),P(G),C(G)分别是G的素子群,极小素子群,极子群,凸1-子群集合,Ω(G)是P(G)在C(G)中生成的闭子格。Ω(G)的元素称为G的Ω-子群。  相似文献   
14.
Radar Imaging of Mercury   总被引:1,自引:0,他引:1  
Earth-based radar has been one of the few, and one of the most important, sources of new information about Mercury during the three decades since the Mariner 10 encounters. The emphasis during the past 15 years has been on full-disk, dual-polarization imaging of the planet, an effort that has been facilitated by the development of novel radar techniques and by improvements in radar systems. Probably the most important result of the imaging work has been the discovery and mapping of radar-bright features at the poles. The radar scattering properties of these features, and their confinement to permanently shaded crater floors, is consistent with volume backscatter from a low-loss volatile such as clean water ice. Questions remain, however, regarding the source and long-term stability of the putative ice, which underscores the need for independent confirmation by other observational methods. Radar images of the non-polar regions have also revealed a plethora of bright features, most of which are associated with fresh craters and their ejecta. Several very large impact features, with rays and other bright ejecta spreading over distances of 1,000 km or more, have been traced to source craters with diameters of 80–125 km. Among these large rayed features are some whose relative faintness suggests that they are being observed in an intermediate stage of degradation. Less extended ray/ejecta features have been found for some of the freshest medium-size craters such as Kuiper and Degas. Much more common are smaller (<40 km diameter) fresh craters showing bright rim-rings but little or no ray structure. These smaller radar-bright craters are particularly common over the H-7 quadrangle. Diffuse areas of enhanced depolarized brightness have been found in the smooth plains, including the circum-Caloris planitiae and Tolstoj Basin. This is an interesting finding, as it is the reverse of the albedo contrast seen between the radar-dark maria and the radar-bright cratered highlands on the Moon.  相似文献   
15.
Previous studies have identified solar 27-day signatures in several parameters in the Mesosphere/Lower thermosphere region, including temperature and Noctilucent cloud (NLC) occurrence frequency. In this study we report on a solar 27-day signature in NLC altitude with peak-to-peak variations of about 400?m. We use SCIAMACHY limb-scatter observations from 2002 to 2012 to detect NLCs. The superposed epoch analysis method is applied to extract solar 27-day signatures. A 27-day signature in NLC altitude can be identified in both hemispheres in the SCIAMACHY dataset, but the signature is more pronounced in the northern hemisphere. The solar signature in NLC altitude is found to be in phase with solar activity and temperature for latitudes ?70°N. We provide a qualitative explanation for the positive correlation between solar activity and NLC altitude based on published model simulations.  相似文献   
16.
In this study, predictions of the E-CHAIM ionospheric model are compared with measurements by the incoherent scatter radars RISR at Resolute Bay, Canada, in the northern polar cap. Reasonable coverage was available for all seasons except winter for which no conclusions were drawn. It is shown that ratios of the model-to measured electron densities are close to unity in the central part of the F layer, around its peak. This is particularly evident for summer daytime. Distributions of the ratios are wider for other seasons indicating larger number of cases when the model underestimates or overestimates. E-CHAIM underestimates the electron density at ionospheric topside and bottomside by ~ 10–20 %. At the bottomside, the underestimations are strongest in summer and equinoctial nighttime. At the topside, the underestimations are strongest in autumn nighttime. Model overestimations are noticeable in the middle part of the F layer during dawn hours in autumn. Overall, the model tends to not predict highest-observed peak electron densities and the largest-observed heights of the peak.  相似文献   
17.
文章简要介绍了共面波导的定义及特点,详细分析了在射频PCB设计中的共面波导效应及其对微带传输线的影响,同时分析介绍了利用共面波导效应画传输线的方法。  相似文献   
18.
The ability to observe meteorological events in the polar regions of the Earth from satellite celebrated an anniversary, with the launch of TIROS-I in a pseudo-polar orbit on 1 April 1960. Yet, after 50 years, polar orbiting satellites are still the best view of the polar regions of the Earth. The luxuries of geostationary satellite orbit including rapid scan operations, feature tracking, and atmospheric motion vectors (or cloud drift winds), are enjoyed only by the middle and tropical latitudes or perhaps only cover the deep polar regions in the case of satellite derived winds from polar orbit. The prospect of a solar sailing satellite system in an Artificial Lagrange Orbit (ALO, also known as “pole sitters”) offers the opportunity for polar environmental remote sensing, communications, forecasting and space weather monitoring. While there are other orbital possibilities to achieve this goal, an ALO satellite system offers one of the best analogs to the geostationary satellite system for routine polar latitude observations.  相似文献   
19.
地磁Ap指数滞后太阳周循环分析   总被引:3,自引:0,他引:3  
把1932-2006年地磁Ap指数12个月流动均值分解成为(Ap)R和(Ap)I.其中(Ap)R为太阳黑子数R的线性函数,与太阳黑子数R相位相同,可能对应于日冕物质抛射(CME)等地磁控制因素. (Ap)I分量与太阳黑子数R相位相差约180°,该分量可能对应于极冕洞变化(从太阳峰年开始,由日面极区逐渐向赤道延伸).以地磁Ap指数与太阳黑子数R滞后非常严重的第20太阳周为例,证实了(Ap)I分量与极冕洞向赤道延伸循环变化相对应.因此极冕洞循环变化可能是导致地磁扰动指数与太阳周循环相位不一致,出现滞后现象的一个十分重要原因.   相似文献   
20.
设G是一个格序群,P(G)是G的极子群集合,C(G)是G的凸l-子群集合,Ω(G)是P(G)在C(G)中生成的闭子格,本文通过对Ω(G)的研究得到了一系列重要结果,对有限值格序群给予了一系列新的刻画,证明了g是基元当且仅当g-是g的唯一的Ω-值等结论,实际上对P.Conrad提出的问题"Describetheelementsin"进行了富有意义的探索。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号