首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   526篇
  免费   135篇
  国内免费   70篇
航空   384篇
航天技术   232篇
综合类   41篇
航天   74篇
  2024年   1篇
  2023年   20篇
  2022年   20篇
  2021年   34篇
  2020年   27篇
  2019年   29篇
  2018年   27篇
  2017年   17篇
  2016年   28篇
  2015年   29篇
  2014年   39篇
  2013年   45篇
  2012年   28篇
  2011年   49篇
  2010年   25篇
  2009年   38篇
  2008年   51篇
  2007年   31篇
  2006年   19篇
  2005年   20篇
  2004年   17篇
  2003年   19篇
  2002年   15篇
  2001年   14篇
  2000年   11篇
  1999年   13篇
  1998年   11篇
  1997年   12篇
  1996年   3篇
  1995年   7篇
  1994年   5篇
  1993年   4篇
  1992年   6篇
  1991年   2篇
  1990年   9篇
  1989年   2篇
  1988年   3篇
  1986年   1篇
排序方式: 共有731条查询结果,搜索用时 359 毫秒
201.
霍尔推力器内部等离子体流场数值分析   总被引:1,自引:1,他引:1       下载免费PDF全文
建立以宏观电中性、不同种类粒子间滑移流动为基本假设的一维多流体简化模型,构造了相应的数值计算方法,用于分析霍尔推力器(亦称稳态等离子体推力器,简称SPT)的加速器通道内部物理过程。在适当边界条件以及适当模型常数条件下,能够获得无论在定性还是定量上都与实际比较接近的收敛的稳态解。结果显示,电势降落集中在出口附近,离子加速过程与该电势降落一致;在通道前半段电离比较剧烈,而在出口附近趋于平缓,出口电离度接近80%;由于焦耳加热作用,电子从出口截面向阳极漂移过程中,其温度由初始的约10eV首先提升到接近60eV的峰值,该峰值出现在离出口约1/3通道长度位置上;随后,由于越来越多的能量损耗于电离过程,到阳极附近电子温度降至约25eV。受其中的一些假设所限,本模型不能反映一些特殊区域和某些比较重要的物理过程,同时能够收敛的条件也受到了限制。  相似文献   
202.
几何尺寸对高超声速进气道气动性能的影响   总被引:1,自引:0,他引:1  
王亚岗  袁化成  郭荣伟 《航空学报》2014,35(7):1893-1901
为了探索模型缩尺比对高超声速进气道气动性能的影响,对不同缩尺比的二元高超声速进气道开展了数值模拟研究,结果表明:随着缩尺比的增大,进气道流量系数、隔离段出口总压恢复系数和马赫数均逐渐增大,而静压比逐渐减小,且来流马赫数越高,上述参数变化幅度越大。由理论与数值模拟分析可知,上述现象主要是由于不同缩尺比下,进气道当地雷诺数不同,导致进气道附面层相对厚度变化,进而影响进气道气动性能。理论分析了进气道总压恢复系数与缩尺比的定量关系,就进气道而言,进气道进口处附面层相对厚度减小1%,隔离段出口总压恢复系数提高约0.7%。  相似文献   
203.
采用非线性Gap单元建立了复合材料层合板单钉连接有限元分析模型,并对五种不同铺层比例的层合板进行了计算,同时,还运用Hoffman失效判据对层合板进行了失效分析.根据计算结果分析了铺层比例对孔边应力分布、钉孔接触力分布和孔边失效系数的影响,得出最优铺层比例方案,其结论对复合材料层合板单钉机械连接设计具有一定的工程参考价值.  相似文献   
204.
中心分级燃烧室预燃级燃烧性能实验   总被引:7,自引:6,他引:7  
研究了一种中心分级燃烧室.在某大推力航空发动机慢车工况下,采用单头部矩形燃烧室,进行了燃烧性能实验,考察了预燃级旋流杯套筒扩张角、台阶高度、预燃级气量分配对污染排放、燃烧效率和贫油熄火油气比的影响作用.实验结果表明:慢车工况下,预燃级旋流杯套筒扩张角从60°增大到100°后,NOx排放降低42%,CO和未燃碳氢燃料(UHC)排放均增加2.5倍左右,燃烧效率降低1.75%,贫油熄火油气比从0.0038增大到0.0067;台阶高度减小24%后,NOx排放降低37%,CO和UHC排放分别增加1.5倍和1.2倍,燃烧效率降低1.32%,贫油熄火油气比从0.0042增大到0.0061;预燃级气量分配减小20%后,NOx排放增加13.5%,CO和UHC排放分别降低55.6%和38.9%,燃烧效率增大1.46%,贫油熄火油气比从0.0061减小到0.0051.   相似文献   
205.
盛佳明  张海灯  吴云  唐孟潇  高丽敏 《推进技术》2020,41(10):2228-2236
为研究电弧放电等离子体激励对超声速压气机叶栅激波/边界层干扰的控制作用,建立了模拟等离子体激励作用效果的唯象学模型,进一步以ARL-SL19超声速叶栅为对象,通过数值仿真研究了电弧放电等离子体与叶栅通道内部流动的相互作用及其对叶栅流动损失的影响。结果表明:等离子体唯象学模型能够较好模拟电弧放电等离子体诱导产生冲击波的气动特性。电弧放电等离子体激励对叶栅通道内部流动主要具有三种作用效果:在放电区,注入的热量会产生阻塞效应,增加近壁面气流的流动损失;在激波/边界层相互作用区,能够改变激波系结构,减小激波损失;在尾迹区,冲击波会诱导产生脱落涡。  相似文献   
206.
陈朝  于锦禄  张磊  蒋陆昀  蒋永健  胡雅骥 《推进技术》2020,41(12):2766-2773
本文设计了一种基于三维旋转滑动弧的航空发动机新型燃烧室头部,该头部可以在保持原有燃烧室结构不变的基础上,实现对燃烧室的点火和助燃。进行了新型燃烧室头部的放电特性实验,分析了稳定电弧滑动(A-G)模式和击穿伴随滑动(B-G)模式两种放电模式的特点。探究了两种放电模式对振动温度的影响,以及空气流量和电压对OH、O2、O3、NO四种粒子光谱发射强度的影响。结果表明,B-G模式电弧的放电功率更大,达到84W,放电模式对振动温度的影响取决于空气流量和电压的变化,而光谱发射强度则是A-G模式大于B-G模式。  相似文献   
207.
为分析非平衡等离子体对空气/甲烷扩散火焰的助燃效果,实验以发射中心谱线430nm的激发态自由基CH*表征火焰燃烧状态,采用同轴圆柱构型激励器在高频交流模式下激发等离子体,分析了火焰CH*自发辐射图像、火焰高度、CH*径向分布和燃烧释热速率等火焰特性在不同空气流量和当量比下随放电电压的变化规律。结果表明:等离子体激励在空气流量较低时,会显著增强火焰上游甲烷燃烧,从而降低CH*空间分布高度和火焰高度;空气流量增大后,有利于促进甲烷充分燃烧,增大火焰下游CH*辐射强度和分布范围。在火焰上游区域,等离子体气动效应可有效扩展甲烷径向分布,实现剪切层更宽范围燃烧,其活化效应会明显提高剪切层燃烧强度,并随电压增大作用效果逐渐增强。此外,等离子体激励会使燃烧器喷嘴出口附近火焰释热速率显著增大,该现象在空气-甲烷动量比较大时更容易发生。  相似文献   
208.
针对等离子体流动控制数值模拟中唯像学模型高度适应能力不足的问题,假设等离子体中离子数密度正比于放电光强,对101.3~1.5kPa气压下等离子体放电图片进行灰度处理,得到等离子体发光的相对光强、光强比即离子数密度随气压、激励电压的变化特点。结果表明:随着气压增大,从弥散放电逐渐转化为丝状放电,而光强比逐渐减小,可以使用大气压下的饱和总相对光强代替其他气压下的结果;提高激励电压,等离子体出现双侧放电,且放电光强增大,放电电荷与激励电压近似成线性关系。进一步通过理论推导建立了新的电荷分布边界条件,并拟合了多个气压和激励电压下等离子体发光的相对光强,然后选择其中两个典型工况进行数值模拟,将计算结果与相应气压下等离子体诱导射流激光粒子图像测量结果进行比较,对该模型进行了验证,表明该模型能够准确模拟飞行高度、激励电压对等离子体诱导射流的影响。   相似文献   
209.
赖承祺  顾左  宋莹莹  王蒙  郭伟龙  吴辰宸 《推进技术》2019,40(10):2183-2189
为预估与提高航天器有效载荷能力,结合航天运输系统理论与离子推力器放电模型,对深空探测任务中以离子电推进系统为主要动力来源的航天器有效载荷能力进行了分析。通过理论推导,构建并揭示了有效载荷分数与深空探测任务参数和电推进系统性能参数的函数关系与潜在联系。结果表明:动力装置单位质量越小,航天器所能达到的最佳有效载荷分数越大;有效载荷分数的高低与离子引出份额、原初电子利用率参数的大小以及任务时间的长短呈正相关;当离子电推进系统可以达到更高的载荷比时,则需要更高的工质利用率作为支持。  相似文献   
210.
宋莹莹  顾左  王蒙  赖承祺  郭伟龙 《推进技术》2019,40(11):2633-2640
为了准确掌握离子推力器放电室阳极壁面电流密度分布特性,并深入理解阳极壁面处等离子体运动特性,设计了近阳极壁面等离子体诊断的具体实施方案,并基于LIPS-200离子推力器开展了近阳极壁面处等离子体诊断试验研究,得到了主要磁极附近壁面等离子体参数,并得到阳极壁面吸收电流密度分布特性。试验结果表明:LIPS-200离子推力器阳极壁面处主要磁极附近的等离子体密度范围为,测试点的电子温度范围为,壁面电流密度范围为;柱段壁面电子温度相对锥段较低,但电流密度较大,尤其在中间极靴位置电流密度最大,约为阴极极靴处电流密度的3倍,约为屏栅极靴处电流密度的2倍,阳极电流主要在放电室中间极靴处发生损失。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号