首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   149篇
  免费   13篇
  国内免费   7篇
航空   32篇
航天技术   111篇
综合类   2篇
航天   24篇
  2023年   7篇
  2022年   1篇
  2021年   8篇
  2020年   6篇
  2019年   4篇
  2018年   5篇
  2017年   2篇
  2016年   4篇
  2015年   3篇
  2014年   17篇
  2013年   14篇
  2012年   6篇
  2011年   11篇
  2010年   6篇
  2009年   8篇
  2008年   19篇
  2007年   8篇
  2006年   2篇
  2005年   6篇
  2004年   5篇
  2000年   3篇
  1998年   1篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1994年   4篇
  1993年   7篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
排序方式: 共有169条查询结果,搜索用时 0 毫秒
151.
Asteroid exploration provides a new approach to study the formation of the solar system and the planetary evolution. Choosing a suitable target and designing of feasible profile for asteroid mission are challenging due to constraints such as scientific value and technical feasibility. This paper investigates a feasible mission scenario among the potential candidates of multiple flybys and sample return missions. First, a group of potential candidates are selected by considering the physical properties and accessibility of asteroids, for the sample return missions. Second, the feasible mission scenarios for multiple flybys and sample return missions to various spectral-type asteroids are investigated. We present the optimized design of preliminary interplanetary transfer trajectory for two kinds of missions. One is the single sample return mission to asteroids with various spectral types. The other is the multiple flybys and sample return mission to several asteroids. In order to find the optimal profiles, the planetary swing-by technique and Differential Evolution algorithm are used.  相似文献   
152.
Measurements of the chemical composition of the giant planets provide clues of their formation and evolution processes. According to the currently accepted nucleation model, giant planets formed from the initial accretion of an icy core and the capture of the protosolar gas, mosly composed of hydrogen and helium. In the case of Jupiter and Saturn (the gaseous giants), this gaseous component dominates the composition of the planet, while for Uranus and Neptune (the icy giants) it is only a small fraction of the total mass. The measurement of elemental and isotopic ratios in the giant planets provides key diagnostics of this model, as it implies an enrichment in heavy elements (as well as deuterium) with respect to the cosmic composition. Neutral atmospheric constituents in the giant planets have three possible sources: (1) internal (fromthe bulk composition of the planet), (2) photochemical (fromthe photolysis ofmethane) and(3) external (from meteoritic impacts, of local or interplanetary origin). This paper reviews our present knowledge about the atmospheric composition in the giant planets, and their elemental and istopic composition. Measurements concerning key parameters, like C/H, D/H or rare gases in Jupiter, are analysed in detail. The conclusion addresses open questions and observations to be performed in the future.  相似文献   
153.
The two classes of outer planets, Gas Giants and Ice Giants, have distinctly different global circulation patterns and internal structure. Ongoing ground-based observations of the Ice Giants provide clues to better understanding and Galileo and Cassini data will generate constraints for Gas Giant modeling. The composition below the cloud levels, the depths to which the winds penetrate and the processes that sustain the zonal winds and weather systems are not understood. Basic questions concerning the structure, composition and atmospheric dynamics that are sustained on the four giants could be answered by a combination of orbiters and probes. Future missions that could answer these questions are not currently under development.  相似文献   
154.
The Optical Probe for Regolith Analysis (OPRA) is a spike-shaped subsurface analytical probe that will be delivered to a planet, asteroid, or cometary body by a lander and/or rover. OPRA will be pushed down into the subsurface to record near infrared spectra as a function of depth down to maximum of 50 cm. Therefore, knowledge of the required penetration force to specific depths can be helpful in estimating the length of the probe. Test probes covering the anticipated diameter (2.5, 1.9, 1.2 and 0.9 cm diameter) and tip angle (T.A. = 30°, 60°, 90° and 120°) of OPRA were inserted mechanically into dry playground sand. The results showed that tip angle does not have a major effect, while probe diameter and density of the regolith are the most important parameters. Increasing probe diameter from 0.9 to 1.9 cm (i.e. a factor of 2) leads to an increase in penetration force from 200 to 1000 N (i.e. a factor of 5) at 20 cm depth. An increase in bulk density (B.D.) from 1550 to 1700 kg m−3 leads to an increase in penetration force from 10 to 200 N at 20 cm depth. Bearing capacity theory was used to explain the downward movement of the penetrometer through regolith and showed good agreement with the experimental results. This model was then used to take into account the effect of gravity on other planetary bodies. We observed a good agreement between the theoretical model and results from penetration testings on the Moon by the Apollo missions. Since the maximum allowed force for penetration is the weight of the lander/rover on their targeted planetary surface, our results put a strong constraint on the maximum reachable depth without endangering the whole mission.  相似文献   
155.
The high precision gamma-ray spectrometer (GRS) is scheduled to be launched on the lunar polar orbiter of the SELENE mission in 2007. The GRS consists of a large Ge crystal as a main detector and massive bismuth germanate crystals as an anticoincidence detector. A Stirling cryocooler was adopted in cooling the Ge detector. The flight model of SELENE GRS has been completed and an energy resolution of 3.0 keV (FWHM) at 1.332 MeV has been achieved. The spectrometer aims to observe nuclear line gamma rays emitted from the lunar surface in a wide energy range from 100 keV to 12 MeV for one year and more to obtain chemical composition on the entire lunar surface. The gamma-ray data enable us to study lunar geoscience problems including crust and mantle composition, and volatile reservoirs at polar regions.  相似文献   
156.
In August 2005 NASA launched a large orbiting science observatory, the Mars Reconnaissance Orbiter (MRO), for what is scheduled to be a 5.4-year mission. High resolution imaging of the surface is a principal goal of the mission. One consequence of this goal however is the need for a low science orbit. Unfortunately this orbit fails the required 20-year orbit life set in NASA Planetary Protection (PP) requirements [NASA. Planetary protection provisions for robotic extraterrestrial missions, NASA procedural requirements NPR 8020.12C, NASA HQ, Washington, DC, April 2005.]. So rather than sacrifice the science goals of the mission by raising the science orbit, the MRO Project chose to be the first orbiter to pursue the bio-burden reduction approach.  相似文献   
157.
The objective of this paper is to investigate and reduce the impact of the errors in the planetary ephemerides on X-ray pulsar-based navigation system for Earth-orbiting satellite. Expressions of the system biases caused by the errors in the planetary ephemerides are derived. The result of investigation has shown that the impact of the error in Earth’s ephemeris is must greater than the errors in the other ephemerides and would greatly degrade the performance of X-ray pulsar-based navigation system. Moreover, the system bias is modeled as a slowly time-varying process, and is handled by including it as a part of navigation state vector. It has been demonstrated that the proposed navigation system is completely observable, and some simulations are performed to verify its feasibility.  相似文献   
158.
In a paper submitted to A&A we present the first line blanketed hydrodynamic models of spherically expanding atmospheres of hot stars. This paper is complementary to the submitted paper. Here, we emphasize the advantages and the weak points of our approach and we present additional technical aspects.The models are characterised by a simultaneous solution of the equation of motion, the non-LTE populations of H and He, and radiation transfer in a line blanketed atmosphere. The entire domain from the optically thick photosphere out to the terminal velocity of the wind is treated. The radiative forces are evaluated consistently with the depth-dependent radiation field, taking into account multiple scattering by metal lines and line overlap.  相似文献   
159.
NASA's planned Ares V cargo launch vehicle offers the potential to completely change the paradigm of future space science mission architectures. Future space science telescopes desire increasingly larger telescope collecting aperture. But, current launch vehicle mass and volume constraints are a severe limit. The Ares V greatly relaxes these constraints. For example, while current launch vehicles have the ability to place a 4.5 m diameter payload with a mass of 9400 kg on to a Sun-Earth L2 transfer trajectory, the Ares V is projected to have the ability to place an 8.8 m diameter payload with a mass of approximately 60,000 kg on to the same trajectory, or 180,000 kg into Low Earth Orbit. Also the Ares V could place approximately 3000 kg (13,000 kg with a Centaur upper stage) on to a trajectory with a C3 of 106 km2/s2, arriving at Saturn in 6.1 years without the use of gravity assists. This paper summarizes the current planned Ares V payload launch capability.  相似文献   
160.
Toward a global space exploration program: A stepping stone approach   总被引:1,自引:0,他引:1  
In response to the growing importance of space exploration in future planning, the Committee on Space Research (COSPAR) Panel on Exploration (PEX) was chartered to provide independent scientific advice to support the development of exploration programs and to safeguard the potential scientific assets of solar system objects. In this report, PEX elaborates a stepwise approach to achieve a new level of space cooperation that can help develop world-wide capabilities in space science and exploration and support a transition that will lead to a global space exploration program. The proposed stepping stones are intended to transcend cross-cultural barriers, leading to the development of technical interfaces and shared legal frameworks and fostering coordination and cooperation on a broad front. Input for this report was drawn from expertise provided by COSPAR Associates within the international community and via the contacts they maintain in various scientific entities. The report provides a summary and synthesis of science roadmaps and recommendations for planetary exploration produced by many national and international working groups, aiming to encourage and exploit synergies among similar programs. While science and technology represent the core and, often, the drivers for space exploration, several other disciplines and their stakeholders (Earth science, space law, and others) should be more robustly interlinked and involved than they have been to date. The report argues that a shared vision is crucial to this linkage, and to providing a direction that enables new countries and stakeholders to join and engage in the overall space exploration effort. Building a basic space technology capacity within a wider range of countries, ensuring new actors in space act responsibly, and increasing public awareness and engagement are concrete steps that can provide a broader interest in space exploration, worldwide, and build a solid basis for program sustainability. By engaging developing countries and emerging space nations in an international space exploration program, it will be possible to create a critical bottom-up support structure to support program continuity in the development and execution of future global space exploration frameworks. With a focus on stepping stones, COSPAR can support a global space exploration program that stimulates scientists in current and emerging spacefaring nations, and that will invite those in developing countries to participate—pursuing research aimed at answering outstanding questions about the origins and evolution of our solar system and life on Earth (and possibly elsewhere). COSPAR, in cooperation with national and international science foundations and space-related organizations, will advocate this stepping stone approach to enhance future cooperative space exploration efforts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号