首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   195篇
  免费   83篇
  国内免费   43篇
航空   168篇
航天技术   80篇
综合类   10篇
航天   63篇
  2023年   10篇
  2022年   21篇
  2021年   16篇
  2020年   22篇
  2019年   18篇
  2018年   13篇
  2017年   3篇
  2016年   6篇
  2015年   6篇
  2014年   15篇
  2013年   17篇
  2012年   20篇
  2011年   20篇
  2010年   25篇
  2009年   9篇
  2008年   15篇
  2007年   12篇
  2006年   8篇
  2005年   5篇
  2004年   5篇
  2003年   8篇
  2002年   1篇
  2001年   3篇
  2000年   2篇
  1999年   4篇
  1998年   5篇
  1997年   7篇
  1996年   2篇
  1995年   5篇
  1994年   4篇
  1993年   3篇
  1992年   2篇
  1991年   3篇
  1990年   1篇
  1989年   2篇
  1986年   1篇
  1984年   2篇
排序方式: 共有321条查询结果,搜索用时 328 毫秒
181.
The developing secondary flow fields in the entrance section of a rotating straight channel were experimentally investigated using Particle Image Velocimetry (PIV). The effects of streamwise position, Reynolds number and rotation number on the development of the secondary flow fields were revealed. The results show that the absolute values of vorticity flux of the trailing side roll cells increase with increasing radius of the measured plane and rotation number. When the absolute value of vorticity flux exceeds a critical value, the merging of the trailing side roll cells appears. Moreover, when the number of the trailing side vortex pairs is even, the absolute values of vorticity flux of the leading side vortices increase along streamwise direction. Otherwise, the absolute values decrease along the streamwise direction. By the circulation analysis, this phenomenon was found to have relationship with the merging of the trailing side roll cells, and further concluded that the secondary flow field in a rotating channel has to be treated as a whole. At last, the increase of the Reynolds number was found to be able to induce the merging position moves upstream.  相似文献   
182.
Solar flares are explosive events in the solar corona, representing fast conversion of magnetic energy into thermal and kinetic energy, and hence radiation, due to magnetic reconnection. Modelling is essential for understanding and predicting these events. However, self-consistent modelling is extremely difficult due to the vast spatial and temporal scale separation between processes involving thermal plasma (normally considered using magnetohydrodynamic (MHD) approach) and non-thermal plasma (requiring a kinetic approach). In this mini-review we consider different approaches aimed at bridging the gap between fluid and kinetic modelling of solar flares. Two types of approaches are discussed: combined MHD/test-particle (MHDTP) models, which can be used for modelling the flaring corona with relatively small numbers of energetic particles, and hybrid fluid-kinetic methods, which can be used for modelling stronger events with higher numbers of energetic particles. Two specific examples are discussed in more detail: MHDTP models of magnetic reconnection and particle acceleration in kink-unstable twisted coronal loops, and a novel reduced-kinetic model of particle transport in converging magnetic fields.  相似文献   
183.
The receiver autonomous integrity monitoring (RAIM) is one of the most important parts in an avionic navigation system. Two problems need to be addressed to improve this system, namely, the degeneracy phenomenon and lack of samples for the standard particle filter (PF). However, the number of samples cannot adequately express the real distribution of the probability density function (i.e., sample impoverishment). This study presents a GPS receiver autonomous integrity monitoring (RAIM) method based on a chaos particle swarm optimization particle filter (CPSO-PF) algorithm with a log likelihood ratio. The chaos sequence generates a set of chaotic variables, which are mapped to the interval of optimization variables to improve particle quality. This chaos perturbation overcomes the potential for the search to become trapped in a local optimum in the particle swarm optimization (PSO) algorithm. Test statistics are configured based on a likelihood ratio, and satellite fault detection is then conducted by checking the consistency between the state estimate of the main PF and those of the auxiliary PFs. Based on GPS data, the experimental results demonstrate that the proposed algorithm can effectively detect and isolate satellite faults under conditions of non-Gaussian measurement noise. Moreover, the performance of the proposed novel method is better than that of RAIM based on the PF or PSO-PF algorithm.  相似文献   
184.
 Parameter optimization of the controllable local degree of freedom is studied for reducing vibration of the flexible manipulator at the lowest possible cost. The controllable local degrees of freedom are suggested and introduced to the topological structure of the flexible manipulator, and used as an effective way to alleviate vibration through dynamic coupling. Parameters introduced by the controllable local degrees of freedom are analyzed and their influences on vibration reduction are investigated. A strategy to optimize these parameters is put forward and the corresponding optimization method is suggested based on Particle Swarm Optimization (PSO). Simulations are conducted and results of case studies confirm that the proposed optimization method is effective in reducing vibration of the flexible manipulator at the lowest possible cost.  相似文献   
185.
Robust design of NLF airfoils   总被引:4,自引:3,他引:1  
 A robust optimization design approach of natural laminar airfoils is developed in this paper. First, the non-uniform rational B-splines (NURBS) free form deformation method based on NURBS basis function is introduced to the airfoil parameterization. Second, aerodynamic characteristics are evaluated by solving Navier-Stokes equations, and the γ-Reθt transition model coupling with shear-stress transport (SST) turbulent model is introduced to simulate boundary layer transition. A numerical simulation of transition flow around NLF0416 airfoil is conducted to test the code. The comparison between numerical simulation results and wind tunnel test data approves the validity and applicability of the present transition model. Third, the optimization system is set up, which uses the separated particle swarm optimization (SPSO) as search algorithm and combines the Kriging models as surrogate model during optimization. The system is applied to carry out robust design about the uncertainty of lift coefficient and Mach number for NASA NLF-0115 airfoil. The data of optimized airfoil aerodynamic characteristics indicates that the optimized airfoil can maintain laminar flow stably in an uncertain range and has a wider range of low drag.  相似文献   
186.
针对组合动力水平起飞可重复使用运载器,开展了上升段轨迹优化模型设计与轨迹优化方法研究。首先,针对跨大空/速域飞行须采用多种动力形式协调工作这一问题,考虑动力/气动/轨迹/指标间的复杂耦合关系,建立了运载器动力和气动模型。其次,为降低轨迹优化问题的求解难度,设计了一种全新的飞行剖面,实现了关键优化参数的提取和攻角约束的自动满足,减少了优化算法需要处理的约束数量。然后,提出了一种改进的粒子群优化(PSO)算法完成求解;在收敛性分析的基础上,引入强化学习机制对PSO寻优过程进行自主智能控制,从本质上提升了PSO算法的求解效率。最后通过数学仿真验证了方法的正确性和有效性。  相似文献   
187.
《中国航空学报》2020,33(5):1517-1531
As an emergency and auxiliary power source for aircraft, lithium (Li)-ion batteries are important components of aerospace power systems. The Remaining Useful Life (RUL) prediction of Li-ion batteries is a key technology to ensure the reliable operation of aviation power systems. Particle Filter (PF) is an effective method to predict the RUL of Li-ion batteries because of its uncertainty representation and management ability. However, there are problems that particle weights cannot be updated in the prediction stage and particles degradation. To settle these issues, an innovative technique of F-distribution PF and Kernel Smoothing (FPFKS) algorithm is proposed. In the prediction stage, the weights of the particles are dynamically updated by the F kernel instead of being fixed all the time. Meanwhile, a first-order independent Markov capacity degradation model is established. Moreover, the kernel smoothing algorithm is integrated into PF, so that the variance of the parameters of capacity degradation model keeps invariant. Experiments based on NASA battery data sets show that FPFKS can be excellently applied to RUL prediction of Li-ion batteries.  相似文献   
188.
The impact of the solar activity on the heliosphere has a strong influence on the modulation of the flux of low energy galactic cosmic rays arriving at Earth. Different instruments, such as neutron monitors or muon detectors, have been recording the variability of the cosmic ray flux at ground level for several decades. Although the Pierre Auger Observatory was designed to observe cosmic rays at the highest energies, it also records the count rates of low energy secondary particles (the scaler mode) for the self-calibration of its surface detector array. From observations using the scaler mode at the Pierre Auger Observatory, modulation of galactic cosmic rays due to solar transient activity has been observed (e.g., Forbush decreases). Due to the high total count rate coming from the combined area of its detectors, the Pierre Auger Observatory (its detectors have a total area greater than 16,000 m2) detects a flux of secondary particles of the order of ∼108 counts per minute. Time variations of the cosmic ray flux related to the activity of the heliosphere can be determined with high accuracy. In this paper we briefly describe the scaler mode and analyze a Forbush decrease together with the interplanetary coronal mass ejection that originated it. The Auger scaler data are now publicly available.  相似文献   
189.
刘洋  吴育飞  李宗岩  李江  陈莎 《推进技术》2014,35(1):93-100
为了研究大型分段装药发动机绝热环限燃层的烧蚀规律和特性,针对典型发动机开展了不同时刻和限燃层高度条件下三维两相流场的数值模拟,进行了限燃层表面烧蚀环境的特征分析和烧蚀状态参数提取,设计并研制了地面模拟烧蚀实验装置,开展了不同颗粒冲刷状态条件对限燃层烧蚀影响规律的实验研究,并采用扫描电镜分析了限燃层迎风面和背壁面炭化层的微观形貌。研究结果表明:(1)大型分段装药发动机流道中不同位置处绝热环限燃层表面的两相流冲刷状态不同,由于绝热环在流道中的阻碍作用,其表面形成了一种颗粒聚集浓度较低、冲刷速度较高而气相速度较低的烧蚀环境;(2)地面模拟实验结果表明绝热环限燃层的炭化烧蚀率随颗粒冲刷速度增加而增加,且增加幅度逐渐变大;(3)实验后限燃层的核心冲刷区域表面无炭化层残留,其烧蚀模式由机械剥蚀破坏效应主导。  相似文献   
190.
Release of stored magnetic energy via particle acceleration is a characteristic feature of astrophysical plasmas. Magnetic reconnection is one of the mechanisms for releasing energy from magnetized plasmas. Collisionless magnetic reconnection could provide both the energy release mechanism and the particle accelerator in space plasmas. Here we studied particle acceleration when fluctuating (in-time) electric fields are superposed on an static X-type magnetic field in collisionless hot solar plasma. This system is chosen to mimic the reconnective dissipation of a linear MHD disturbance. Our results are compared to particle acceleration from constant electric field superposed on an X-type magnetic field. The constant electric field configuration represents the effects of steady state magnetic reconnection. Time evolution of ion and electron distributions are obtained by numerically integrating particle trajectories. The frequencies of the electric field represent a turbulent range of waves. Depending on the frequency and amplitude of the electric field, electrons and ions are accelerated to different degrees and have energy distributions of bimodal form consisting of a lower energy part and a high energy tail. For frequencies (ω in dimensioless units) in the range 0.5 ? ω ? 1.0 a substantial fraction (20%–30%) of the proton distribution is accelerated to gamma-ray producing energies. For frequencies in the range 1 ? ω ? 100.0 the bulk of the electron distribution is accelerated to hard X-ray producing energies. The acceleration mechanism is important for solar flares and solar noise storms but it could be applicable to all collisionless astrophysical plasmas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号