首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   4篇
  国内免费   20篇
航空   1篇
航天技术   24篇
综合类   5篇
航天   33篇
  2022年   1篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2015年   4篇
  2014年   3篇
  2013年   7篇
  2012年   4篇
  2011年   3篇
  2010年   7篇
  2009年   4篇
  2008年   4篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1995年   1篇
  1993年   3篇
排序方式: 共有63条查询结果,搜索用时 31 毫秒
11.
3DG111F等4种双极晶体管在航天器驱动电子设备中有着重要的应用。研究和掌握空间辐射环境对这些器件产生的总剂量效应有助于了解单机总剂量效应。文章对3DG111F等4种双极晶体管进行了总剂量辐照试验、测量及试验结果分析。研究结果可为单机总剂量效应的分析提供试验依据。  相似文献   
12.
SRAM FPGA电离辐射效应试验研究   总被引:1,自引:0,他引:1  
针对SRAM FPGA空间应用日益增多,以100万门SRAM FPGA为样品,进行了单粒子效应和电离总剂量效应辐照试验。单粒子试验结果是:试验用粒子最小LET为1.66 MeV·cm2/mg,出现SEU(单粒子翻转);LET为4.17 MeV·cm2/mg,出现SEFI(单粒子功能中断),通过重新配置,样品功能恢复正常;LET在1.66~64.8 MeV?cm2/mg范围内,未出现SEL(单粒子锁定);试验发现,随SEU数量的累积,样品功耗电流会随之增加,对样品进行重新配置,电流恢复正常。电离总剂量辐照试验结果是:辐照总剂量75 krad(Si)时,2只样品功能正常,功耗电流未见明显变化。辐照到87 krad(Si)时,样品出现功能失效。试验表明SRAM FPGA属于SEU敏感的器件,且存在SEFI。SEU和SEFI会破坏器件功能,导致系统故障。空间应用SRAM FPGA必须进行抗单粒子加固设计,推荐的加固方法是三模冗余(TMR)配合定时重新配置(Scrubbing)。关键部位如控制系统慎用SRAM FPGA。  相似文献   
13.
14.
The potential for exposure to large solar particle events (SPEs) with high energy levels is a major concern during interplanetary transfer and extra-vehicular activities (EVAs) on the lunar and Mars surface. Previously, we have used data from the last 5 solar cycles to estimate percentiles of dose to a typical blood-forming organ (BFO) for a hypothetical astronaut in a nominally shielded spacecraft during a 120-d lunar mission. As part of this process, we made use of complete energy spectra for 34 large historical SPEs to calculate what the BFO mGy-Eq dose would have been in the above lunar scenario for each SPE. From these calculated doses, we then developed a prediction model for BFO dose based solely on an assumed value of integrated fluence above 30 MeV (Φ30) for an otherwise unspecified future SPE. In this study, we reasoned that since BFO dose is determined more by protons with higher energies than by those with lower energies, more accurate BFO dose prediction models could be developed using integrated fluence above 60 (Φ60) and above 100 MeV (Φ100) as predictors instead of Φ30. However to calculate the unconditional probability of a BFO dose exceeding a pre-specified limit (“BFO dose risk”), one must also take into account the distribution of the predictor (Φ30,Φ60, or Φ100), as estimated from historical SPEs. But Φ60 and Φ100 have more variability, and less available historical information on which to estimate their distributions over many SPE occurrences, than does Φ30. Therefore, when estimating BFO dose risk there is a tradeoff between increased BFO dose prediction at a given energy threshold and decreased accuracy of models for describing the distribution of that threshold over future SPEs as the threshold increases. Even when taking the second of these two factors into account, we still arrived at the conclusion that overall prediction improves as the energy level threshold increases from 30 to 60 to 100 MeV. These results can be applied to the development of approaches to improve radiation protection of astronauts and the optimization of mission planning for future space missions.  相似文献   
15.
Humans in space are exposed to elevated levels of radiation compared to ground. Different sources contribute to the total exposure with galactic cosmic rays being the most important component. The application of numerical and anthropomorphic phantoms in simulations allows the estimation of dose rates from galactic cosmic rays in individual organs and whole body quantities such as the effective dose. The male and female reference phantoms defined by the International Commission on Radiological Protection and the hermaphrodite numerical RANDO phantom are voxel implementations of anthropomorphic phantoms and contain all organs relevant for radiation risk assessment. These anthropomorphic phantoms together with a spherical water phantom were used in this work to translate the mean shielding of organs in the different anthropomorphic voxel phantoms into positions in the spherical phantom. This relation allows using a water sphere as surrogate for the anthropomorphic phantoms in both simulations and measurements. Moreover, using spherical phantoms in the calculation of radiation exposure offers great advantages over anthropomorphic phantoms in terms of computational time.  相似文献   
16.
Study of depth–dose distributions for intermediate energy ion beams in tissue-like media such as polyethylene (CH2)n provides a good platform for further improvements in the fields of hadrontherapy and space radiation shielding. The depth–dose distributions for 12C ions at various energies and for light and intermediate ion beams (3He, 16O, 20Ne and 28Si) as well as for heavy ions 56Fe in polyethylene were estimated by using simulation toolkit: Geant4. Calculations were performed mainly by considering two different combinations of standard electromagnetic (EM), binary cascade (BIC), statistical multifragmentation (SMF) and Fermi breakup (FB) models. The energies of the ion beams were selected to achieve the Bragg peaks at predefined position (∼60 mm) and as per their availability. Variations of peak-to-entrance ratio (from 7.44 ± 0.05 to 8.87 ± 0.05), entrance dose (from 2.89 ± 0.01 to 203.71 ± 0.63 MeV/mm) and entrance stopping power (from 3.608 to 208.858 MeV/mm, calculated by SRIM) with atomic number (Z) were presented in a systematic manner. The better peak-to-entrance ratio and less entrance dose in the region Z = 2 to 8 (i.e. 3He to 16O) may provide the suitability of the ion beams for hadrontherapy.  相似文献   
17.
To estimate astronaut health risk due to space radiation, one must have the ability to calculate various exposure-related quantities that are averaged over specific organs and tissue types. Such calculations require computational models of the ambient space radiation environment, particle transport, nuclear and atomic physics, and the human body. While significant efforts have been made to verify, validate, and quantify the uncertainties associated with many of these models and tools, relatively little work has focused on the uncertainties associated with the representation and utilization of the human phantoms. In this study, we first examine the anatomical properties of the Computerized Anatomical Man (CAM), Computerized Anatomical Female (CAF), Male Adult voXel (MAX), and Female Adult voXel (FAX) models by comparing the masses of various model tissues used to calculate effective dose to the reference values specified by the International Commission on Radiological Protection (ICRP). The MAX and FAX tissue masses are found to be in good agreement with the reference data, while major discrepancies are found between the CAM and CAF tissue masses and the reference data for almost all of the effective dose tissues. We next examine the distribution of target points used with the deterministic transport code HZETRN (High charge (Z) and Energy TRaNsport) to compute mass averaged exposure quantities. A numerical algorithm is presented and used to generate multiple point distributions of varying fidelity for many of the effective dose tissues identified in CAM, CAF, MAX, and FAX. The point distributions are used to compute mass averaged dose equivalent values under both a galactic cosmic ray (GCR) and solar particle event (SPE) environment impinging isotropically on three spherical aluminum shells with areal densities of 0.4 g/cm2, 2.0 g/cm2, and 10.0 g/cm2. The dose equivalent values are examined to identify a recommended set of target points for each of the tissues and to further assess the differences between CAM, CAF, MAX, and FAX. It is concluded that the previously published CAM and CAF point distributions were significantly under-sampled and that the set of point distributions presented here should be adequate for future studies involving CAM, CAF, MAX, or FAX. It is also found that the errors associated with the mass and location of certain tissues in CAM and CAF have a significant impact on the mass averaged dose equivalent values, and it is concluded that MAX and FAX are more accurate than CAM and CAF for space radiation analyses.  相似文献   
18.
The evidently low solar activity observed between solar cycles 23 and 24 during the years 2008–2010 led to a substantial increase in the Galactic Cosmic Ray (GCR) intensity in comparison with preceding solar minima. As the GCRs consist of highly-ionizing charged particles having the potential to cause biological damage, they are a subject of concern for manned missions to space. With the enhanced particle fluxes observed between 2008 and 2010, it is reasonable to assume that the radiation exposure from GCR must have also increased to unusually high levels. In this paper, the GCR exposure outside and inside the Earth’s magnetosphere is numerically calculated for time periods starting from 1970 to the end of 2011 in order to investigate the increase in dose levels during the years 2008–2010 in comparison with the last three solar minima. The dose rates were calculated in a water sphere, used as a surrogate for the human body, either unshielded or surrounded by aluminium shielding of 0.3, 10 or 40 g/cm2.  相似文献   
19.
于朝霞  王有峰  韩飞  梁彦  贺亮 《上海航天》2013,(5):65-67,72
用自建的工程单机对星敏感器用核心器件CCD的电离总剂量效应进行了研究,给出了不同辐照剂量下辐照前后图像灰度、标准差等反映CCD拍摄图像质量的参数变化。研究表明:CCD对电离总剂量效应较敏感,辐照会引起输出图像灰度和标准差变大,导致图像质量下降、信噪比降低,最终影响探测器的成像效果。  相似文献   
20.
不同种类光电耦合器件(光耦)结构工艺对空间总剂量辐射的敏感性存在较大差异,故对其在航天器的使用应区别对待。文章分别对组成常见光耦的LED部分、光电耦合部分以及集成放大电路部分受电离总剂量辐射和位移损伤效应的影响进行分析,比较了光耦各个组成部分和不同工艺的光耦对辐射的敏感度。在地面辐照测试数据基础上,以3种典型光耦为原型,设计在轨验证电路,对器件在辐射环境下的长期工作情况进行了试验验证。结果表明,在适当的参数选择和合理的电路设计下,这些光耦能够满足低地球轨道航天领域的应用需求。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号