首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   510篇
  免费   42篇
  国内免费   125篇
航空   103篇
航天技术   305篇
综合类   20篇
航天   249篇
  2024年   1篇
  2023年   16篇
  2022年   14篇
  2021年   31篇
  2020年   20篇
  2019年   22篇
  2018年   32篇
  2017年   12篇
  2016年   19篇
  2015年   20篇
  2014年   61篇
  2013年   33篇
  2012年   33篇
  2011年   31篇
  2010年   29篇
  2009年   39篇
  2008年   40篇
  2007年   21篇
  2006年   22篇
  2005年   28篇
  2004年   15篇
  2003年   13篇
  2002年   13篇
  2001年   17篇
  2000年   36篇
  1999年   18篇
  1998年   9篇
  1997年   7篇
  1996年   5篇
  1995年   3篇
  1994年   5篇
  1993年   4篇
  1992年   2篇
  1990年   5篇
  1989年   1篇
排序方式: 共有677条查询结果,搜索用时 31 毫秒
301.
同步轨道多星共位轨道保持技术研究   总被引:1,自引:0,他引:1  
在广泛调研国外同步轨道多星位置保持技术进展的基础上,总结了目前常用的一些位置保持策略的优劣及影响位置保持策略的主要摄动因素,并针对不同情况提出了可行的位置保持策略。  相似文献   
302.
多序列激光阴影成像技术研究及应用   总被引:3,自引:0,他引:3  
为获取超高速碰撞过程中弹丸的飞行姿态及碰撞所产生的碎片云特性,开展了多序列激光阴影成像技术研究。利用多光源空间分离、偏振分光、光束角放大和补偿滤光等技术解决了单色光带来的衍射和干涉噪声以及碰撞瞬间强烈的自发光干扰问题,并先后在碰撞靶上建立了2序列、4序列和8序列激光阴影成像系统。该系统可以获得最小间隔1μs、曝光时间10ns、像素1000万的多个不同时刻的超高速瞬态变化过程图像,并在超高速碰撞靶试验中得到应用,获得了2~7km/s 撞击速度时碎片云的多序列阴影图像,该序列图像清晰地描述了碎片云的轮廓发展变化过程。该技术以低成本的方式实现了超高速摄影机的功能,满足目前碰撞试验粒子的飞行姿态及碎片云显示需要,并可以应用于其它超高速瞬态过程测量及流场结构显示。  相似文献   
303.
常浩  金星  叶继飞  周伟静 《推进技术》2013,34(10):1426-1431
为研究激光功率密度对纳秒激光烧蚀冲量耦合影响,建立了一个复杂的一维热传导和流体动力学模型。以空间碎片常见材料Al为例,用建立的物理模型数值计算了纳秒脉宽激光烧蚀产生的冲量随时间变化情况,数值结果和已有的实验数据符合较好。数值计算表明:辐照的激光功率密度越高,发生等离子体屏蔽时间越早,等离子体屏蔽越明显,能量利用率越低;随着激光功率密度的逐渐增大,获得的冲量逐渐趋于稳定,冲量耦合系数降低,数值计算结果与Phipps的最优能量耦合规律一致。   相似文献   
304.
Approaching control is a key mission for the tethered space robot to perform the task of removing space debris. But the uncertainties of the TSR such as the change of model parameter have an important effect on the approaching mission. Considering the space tether and the attitude of the gripper, the dynamic model of the TSR is derived using Lagrange method. Then a disturbance observer is designed to estimate the uncertainty based on STW control method. Using the disturbance observer, a controller is designed, and the performance is compared with the dynamic inverse controller which turns out that the proposed controller performs better. Numerical simulation validates the feasibility of the proposed controller on the position and attitude tracking of the TSR.  相似文献   
305.
This paper introduces a mission concept for active removal of orbital debris based on the utilization of the CubeSat form factor. The CubeSat is deployed from a carrier spacecraft, known as a mothership, and is equipped with orbital and attitude control actuators to attach to the target debris, stabilize its attitude, and subsequently move the debris to a lower orbit where atmospheric drag is high enough for the bodies to burn up. The mass and orbit altitude of debris objects that are within the realms of the CubeSat’s propulsion capabilities are identified. The attitude control schemes for the detumbling and deorbiting phases of the mission are specified. The objective of the deorbiting maneuver is to decrease the semi-major axis of the debris orbit, at the fastest rate, from its initial value to a final value of about 6471?km (i.e., 100?km above Earth considering a circular orbit) via a continuous low-thrust orbital transfer. Two case studies are investigated to verify the performance of the deorbiter CubeSat during the detumbling and deorbiting phases of the mission. The baseline target debris used in the study are the decommissioned KOMPSAT-1 satellite and the Pegasus rocket body. The results show that the deorbiting times for the target debris are reduced significantly, from several decades to one or two years.  相似文献   
306.
李佳威  高鹏骐  沈鸣  金旺  赵有 《宇航学报》2018,39(11):1299-1307
提出以曲靖非相干散射雷达作为一种可能的发射源与天籁射电阵组成一套双基地雷达空间碎片探测系统,对该系统的空间碎片探测性能进行计算与仿真分析,包括可探测目标雷达散射截面积(RCS)、天籁射电阵对空间目标与碎片探测时间、探测效率等。分析表明,该系统具有探测直径10 cm以下级空间小碎片的潜力,并在最后提出了一种基于该系统的交叉波束的确定方法及对空间碎片定位的方法。  相似文献   
307.
This paper demonstrates active space debris removal using spaceborne laser systems. The laser beam and the surface of the target are discretised into multiple rays and finite elements, respectively, for laser-target interaction modelling, in which the laser ablation process is investigated. A high-fidelity attitude/orbit propagator tool is developed to account for both the linear impulse and angular impulse induced by the laser engagement and other perturbations. The laser system is activated only when three switch criteria are satisfied. In numerical simulations, laser pulses from international space station are generated to deorbit a 3U CubeSat with initially tumbling modes. The results validate the effectiveness of deorbiting tumbling CubeSats using spaceborne laser engagement, with the perigee height lowered by approximately 2.4km in around 30min after 2h propagation. It is also found that the laser engagement becomes more effective for an initially faster rotating object.  相似文献   
308.
Predictions of the impact time and location of space debris in a decaying trajectory are highly influenced by uncertainties. The traditional Monte Carlo (MC) method can be used to perform accurate statistical impact predictions, but requires a large computational effort. A method is investigated that directly propagates a Probability Density Function (PDF) in time, which has the potential to obtain more accurate results with less computational effort. The decaying trajectory of Delta-K rocket stages was used to test the methods using a six degrees-of-freedom state model. The PDF of the state of the body was propagated in time to obtain impact-time distributions. This Direct PDF Propagation (DPP) method results in a multi-dimensional scattered dataset of the PDF of the state, which is highly challenging to process. No accurate results could be obtained, because of the structure of the DPP data and the high dimensionality. Therefore, the DPP method is less suitable for practical uncontrolled entry problems and the traditional MC method remains superior. Additionally, the MC method was used with two improved uncertainty models to obtain impact-time distributions, which were validated using observations of true impacts. For one of the two uncertainty models, statistically more valid impact-time distributions were obtained than in previous research.  相似文献   
309.
Accurate knowledge of the rotational dynamics of a large space debris is crucial for space situational awareness (SSA), whether it be for accurate orbital predictions needed for satellite conjunction analyses or for the success of an eventual active debris removal mission charged with stabilization, capture and removal of debris from orbit. In this light, the attitude dynamics of an inoperative satellite of great interest to the space debris community, the joint French and American spacecraft TOPEX/Poseidon, is explored. A comparison of simulation results with observations obtained from high-frequency satellite range measurements is made, showing that the spacecraft is currently spinning about its minor principal axis in a stable manner. Predictions of the evolution of its attitude motion to 2030 are presented, emphasizing the uncertainty on those estimates due to internal energy dissipation, which could cause a change of its spin state in the future. The effect of solar radiation pressure and the eddy-current torque are investigated in detail, and insights into some of the satellite’s missing properties are provided. These results are obtained using a novel, open-source, coupled orbit-attitude propagation software, the Debris SPin/Orbit Simulation Environment (D-SPOSE), whose primary goal is the study of the long-term evolution of the attitude dynamics of large space debris.  相似文献   
310.
Analysis of the efficiency of two basic strategies for de/re-orbiting large space debris objects to disposal orbits (DO) is given. Large objects in LEO are classified into groups with similar orbital inclinations and comprise primarily last stages of launch vehicles, in GEO vicinity the paper studies upper stages. Under the first de/re-orbiting variant, it is assumed a spacecraft-collector is equipped with several thruster de/re-orbiting kits (TDKs); one of them can be fixed on an object and is capable of de/re-orbiting an object to a DO independently of the collector. In the second variant, a collector operates as a space tug: transfers objects to a DO and then returns to the next objects in line. The authors study possible configuration layouts of collectors in LEO and near GEO. The available analogous projects are analyzed. The efficiency of both de/re-orbiting variants can be properly compared using the estimations of collector's dry mass and having at one's disposal the parameters of the maneuvers required for transfers between all objects in the group. As reasonable criteria of effectiveness, one can consider (separately or jointly) the launch mass of an equipped collector, its ΔV budget, and the required number of such active spacecraft. Two de/re-orbiting variants are compared in terms of these criteria via mass-energy diagrams constructed for each group of objects in both altitude regions. Analysis of these diagrams shows that low Earth orbits can be more efficiently cleaned under the first de-orbiting variant by using a two-stage space system consisting of an active spacecraft carrying TDKs. For GEO, it is expedient to choose the second re-orbiting variant using a single-stage spacecraft. Our analysis shows that LEO cleaning is an order of magnitude more expensive than that for GEO, hence the problem of LEO population should be given increased attention.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号