全文获取类型
收费全文 | 4750篇 |
免费 | 946篇 |
国内免费 | 1139篇 |
专业分类
航空 | 4067篇 |
航天技术 | 1188篇 |
综合类 | 684篇 |
航天 | 896篇 |
出版年
2024年 | 15篇 |
2023年 | 88篇 |
2022年 | 183篇 |
2021年 | 238篇 |
2020年 | 261篇 |
2019年 | 295篇 |
2018年 | 276篇 |
2017年 | 283篇 |
2016年 | 306篇 |
2015年 | 296篇 |
2014年 | 364篇 |
2013年 | 301篇 |
2012年 | 365篇 |
2011年 | 385篇 |
2010年 | 305篇 |
2009年 | 338篇 |
2008年 | 290篇 |
2007年 | 317篇 |
2006年 | 250篇 |
2005年 | 232篇 |
2004年 | 197篇 |
2003年 | 208篇 |
2002年 | 130篇 |
2001年 | 129篇 |
2000年 | 120篇 |
1999年 | 119篇 |
1998年 | 86篇 |
1997年 | 57篇 |
1996年 | 56篇 |
1995年 | 55篇 |
1994年 | 61篇 |
1993年 | 49篇 |
1992年 | 37篇 |
1991年 | 46篇 |
1990年 | 34篇 |
1989年 | 29篇 |
1988年 | 23篇 |
1987年 | 9篇 |
1986年 | 2篇 |
排序方式: 共有6835条查询结果,搜索用时 15 毫秒
281.
282.
In order to improve the drift precision of air supported gyroscope, effects of surface roughness magnitude and direction on vortex torque of air supported gyroscope are studied. Based on Christensen’s rough surface stochastic model and consistency transformation method, Reynolds equation of air supported gyroscope containing surface roughness information is established. Also effects of mathematical models of main machining errors on vortex torque are established. By using finite element method, the Reynolds equation is solved numerically and the vortex torque in the presence of machining errors and surface roughness is calculated. The results show that surface roughness of slit has a significant effect on vortex torque. Transverse surface roughness makes vortex torque greater, while longitudinal surface roughness makes vortex torque smaller. The maximal difference approaches 11.4% during the range analyzed in this article. However surface roughness of journal influences vortex torque insignificantly. The research is of great significance for designing and manufacturing air supported gyroscope and predicting its performance. 相似文献
283.
跨声速风洞全模颤振试验悬浮支撑系统 总被引:2,自引:0,他引:2
介绍了用于CARDC的2.4m跨声速风洞全模颤振试验的悬浮支撑系统的组成、试验装置的结构及其特点、控制算法等。给出了风洞调试试验结果,并进行了简要讨论。试验结果表明,研制的悬浮支撑系统具有强度高,对模型的浮沉和滚转控制能力强等特点。 相似文献
284.
A novel virtual material layer model based on the fractal theory was proposed to predict the natural frequencies of carbon fiber reinforced plastic composite bolted joints. Rough contact surfaces of composite bolted joints are modeled with this new proposed approach. Numerical and experimental modal analyses were conducted to validate the effectiveness of the proposed model. A good consistence is noted between the numerical and experimental results. To demonstrate the necessity of accurately modeling the rough contact surfaces in the prediction of natural frequencies, virtual material layer model was compared with the widely used traditional model based on the Master-Slave contact algorithm and experiments, respectively. Results show that the proposed model has a better agreement with experiments than the widely used traditional model (the prediction accuracy is raised by 8.77% when the pre-tightening torque is 0.5 N∙m). Real contact area ratio A* of three different virtual material layers were calculated. Value of A* were discussed with dimensionless load P*, fractal dimension D and fractal roughness G. This work provides a new efficient way for accurately modeling the rough contact surfaces and predicting the natural frequencies of composite bolted joints, which can be used to help engineers in the dynamic design of composite materials. 相似文献
285.
《中国航空学报》2021,34(2):343-357
Tip clearances of multistage rotors and stators greatly affect aero-engines’ aerodynamic efficiency, stability and safety. The inevitable machining and assembly errors, as well as the complicated error propagation mechanism, cause overproof or non-uniform tip clearances. However, it is generally accepted that tip clearances are difficult to predict, even under assembly state. In this paper, a tip clearance prediction model is proposed based on measured error data. Some 3D error propagation sub-models, regarding rotors, supports and casings, are built and combined. The complex error coupling relationship is uncovered using mathematical methods. Rotor and stator tip clearances are predicted and analyzed in different phase angles. The maximum, minimum and average tip clearances can be calculated. The proposed model is implemented by a computer program, and a case study illustrates its performance and verifies its feasibility. The results can be referred by engineers in assembly quality judgement and decision-making. 相似文献
286.
Forward Variable Area Bypass Injector (FVABI) is one of key components which contributes to modulate the cycle parameters of Variable Cycle Engine (VCE) under various operation conditions. The modeling method of zero-dimensional FVABI was reviewed and its deficiency was analyzed based on FVABI flow characteristic. In order to improve the accuracy of VCE performance simulation, the high-fidelity modeling method of FVABI was developed based on its working characteristics. Then it was coupled with the zero-dimensional VCE model and the multi-level VCE model was built. The results indicate that the geometric and aerodynamic parameters can affect the interaction between the two airflows and the zero-dimensional FVABI model is too simple to predict the component performance accurately, especially when the FVABI inner bypass is chocked. Based on the performance curves for single bypass mode and the regression model of multi-scale support vector regression for double bypass mode, the high-fidelity model can predict FVABI performance accurately and rapidly. The integration of high-fidelity FVABI model into zero-dimensional VCE model can be done by adjusting iterative variables and balance equations. The multi-level model has good convergence and it can predict VCE performance when the FVABI inner bypass is chocked. 相似文献
287.
Delamination represents one of the most severe failure modes in composite laminates, especially when they are subjected to uniaxial compression loads. The evaluation of the delamination damage has always been an essential issue of composite laminates for durability and damage tolerance in engineering practice. Focusing on the most typical and representative elliptical delamination issue, an analytical model simultaneously considering the conservative buckling process and non-conservative delamination propagation process is implemented. Various computational cases considering different delamination depths, directions, aspect ratios, and areas are established, and the predicted results based on the analytical model are carefully compared. Effects of these geometrical delamination parameters on the buckling, delamination propagation, and failure behaviors of composite laminates are thoroughly analyzed, and innovative evaluation principles of the delamination damage have been concluded. It is found that the delamination area is the key factor that truly affecting the failure behaviors of delaminated composites, and the local / global buckling and failure loads show clear linearity with the delamination area, whilst the delamination depth and direction only have slight effects. 相似文献
288.
《中国航空学报》2021,34(5):642-651
A novel accurate tracking controller is developed for the longitudinal dynamics of Hypersonic Flight Vehicles (HFVs) in the presence of large model uncertainties, external disturbances and actuator nonlinearities. Distinct from the state-of-the-art, besides being continuity, no restrictive conditions have been imposed on the HFVs dynamics. The system uncertainties are skillfully handled by being seen as bounded “disturbance terms”. In addition, by means of back-stepping adaptive technique, the accurate tracking (i.e. tracking errors converge to zero as time approaches infinity) rather than bounded tracking (i.e. tracking errors converge to residual sets) has been achieved. What’s more, the accurate tracking problems for HFVs subject to actuator dead-zone and hysteresis are discussed, respectively. Then, all signals of closed-loop system are verified to be Semi-Global Uniformly Ultimate Boundness (SGUUB). Finally, the efficacy and superiority of the developed control strategy are confirmed by simulation results. 相似文献
289.
《中国航空学报》2023,36(6):435-445
The visco-elastoplastic mechanical behavior related to the applied strain rate and temperature around the glass transition temperature of Polymethylmethacrylate (PMMA) has been systematically investigated. The uniaxial tensile test was performed at strain rate and temperature rangs 1.0 × 10−4–1.0 × 10−2 s−1 and 363–393 K, respectively, and the Dynamic Mechanical Analysis (DMA) test was carried out between 363 K and 413 K at various frequencies. Moreover, the robust complex constitutive model considering the temperature and strain rate effect is proposed. A nonlinear viscoelastic model is established to describe the viscoelastic response on the basis of the Zhu-Wang-Tang (ZWT) model and the time temperature equivalence principle, including the dependence of strain rate and temperature. Considering the yield stress, the cooperative model is adopted. The viscoplastic mechanical response is manifested as the competition performance of the softening deformation and hardening behavior. The predicted mechanical responses maintain good consistency with the experimental results, indicating that the visco-elastoplastic constitutive model proposed can accurately predict the mechanical behavior of PMMA materials within the imposed strain rate and near the glass transition temperature range. 相似文献
290.
轴承的生热率与轴承的使用寿命密切相关,为了减小轴承的生热率,以滚动轴承拟静力学分析和滚道控制理论为基础,求得轴承运转过程中的相关参数,进而得到轴承生热率.将轴承最小生热率为目标函数,通过Kriging模型和粒子群优化算法相结合的方式进行了轴承结构参数优化.对NSK 7016A5轴承的研究结果表明:轴承结构参数优化后,轴承整体和轴承内外圈生热率均变小.Kriging模型和粒子群优化算法相结合的轴承结构参数优化方法取得了良好的设计效果,并且提高了轴承的设计效率. 相似文献